Merge remote-tracking branch 'origin/main'

# Conflicts:
#	.idea/misc.xml
This commit is contained in:
Ambili Jacob 2024-12-17 16:47:29 +01:00
commit 691d7eb0ac
33 changed files with 1765 additions and 210 deletions

1
.gitignore vendored
View File

@ -1,4 +1,5 @@
/.idea /.idea
/app/bin/
# Ignore Gradle project-specific cache directory # Ignore Gradle project-specific cache directory
/.gradle /.gradle

2
.idea/misc.xml generated
View File

@ -3,5 +3,5 @@
<component name="FrameworkDetectionExcludesConfiguration"> <component name="FrameworkDetectionExcludesConfiguration">
<file type="web" url="file://$PROJECT_DIR$" /> <file type="web" url="file://$PROJECT_DIR$" />
</component> </component>
<component name="ProjectRootManager" version="2" languageLevel="JDK_23" project-jdk-name="23" project-jdk-type="JavaSDK" /> <component name="ProjectRootManager" version="2" languageLevel="JDK_21" project-jdk-name="23" project-jdk-type="JavaSDK" />
</project> </project>

View File

@ -56,9 +56,3 @@ Run the task "test":
```shell ```shell
./gradlew test ./gradlew test
``` ```
## TimSort
Imported from
- src/java.base/share/classes/java/util/TimSort.java
- src/java.base/share/classes/java/util/ComparableTimSort.java

View File

@ -1,49 +0,0 @@
package de.uni_marburg.powersort.benchmark;
import de.uni_marburg.powersort.sort.DummySort;
import de.uni_marburg.powersort.sort.MergeSort;
import de.uni_marburg.powersort.sort.TimSort;
import de.uni_marburg.powersort.data.RandomIntegers;
import org.openjdk.jmh.annotations.*;
import java.util.concurrent.TimeUnit;
// TODO: The parameters are way too low. Use for debugging only!
@Fork(1)
@Warmup(iterations = 3)
@Measurement(iterations = 6)
public class BenchmarkJmh {
@State(Scope.Benchmark)
public static class State1 {
RandomIntegers d = new RandomIntegers();
Integer[] a;
// TODO: This is inaccurate.
// How to create and use separate arrays for each warmup x iteration x sortAlgorithm ?
@Setup(Level.Invocation)
public void setup() {
a = d.get();
}
}
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Benchmark
public void rand1DummySort(State1 s) {
DummySort.sort(s.a, 0, s.a.length, NaturalOrder.INSTANCE, null, 0, 0);
}
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Benchmark
public void rand1TimSort(State1 s) {
TimSort.sort(s.a, 0, s.a.length, NaturalOrder.INSTANCE, null, 0, 0);
}
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Benchmark
public void rand1MergeSort(State1 s) {
MergeSort.legacyMergeSort(s.a, NaturalOrder.INSTANCE);
}
}

View File

@ -0,0 +1,65 @@
package de.uni_marburg.powersort.benchmark;
import de.uni_marburg.powersort.data.DataEnum;
import de.uni_marburg.powersort.data.ObjectSupplier;
import de.uni_marburg.powersort.sort.SortEnum;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import java.util.concurrent.TimeUnit;
// TODO: The parameters are way too low. Use for debugging only!
/*
* Benchmark parameters
*/
@Fork(0)
@Warmup(iterations = 0)
@Measurement(iterations = 1)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
/*
* Benchmark state parameters
*
* Quote from JMH:
* State objects naturally encapsulate the state on which benchmark is working on.
*/
@State(Scope.Benchmark)
public class MainJmh {
@Param()
private DataEnum dataEnum;
@Param()
private SortEnum sortEnum;
private ObjectSupplier data;
/* package-protected */ Object[] workingCopy;
// TODO: This is inaccurate. How to create and use separate arrays for each warmup x iteration x sortAlgorithm ?
@Setup(Level.Invocation)
public void setup() {
// A new MainJmh object is created for each @Param variation.
// Then, `data` is `null` again.
if (data == null) {
data = dataEnum.getObjectSupplier();
}
// For all warmup and measurement iterations of one @Param variation, the MainJmh object is reused.
// Thus, we can't just sort `data` directly.
// Instead, we have to create a copy of it on which the sort algorithm can work.
// This way, all iterations sort the same input.
workingCopy = data.getCopy();
}
@Benchmark
public void benchmark() {
sortEnum.getSortImpl().sort(workingCopy);
}
}

View File

@ -1,4 +1,7 @@
package de.uni_marburg.powersort.benchmark; package de.uni_marburg.powersort;
import de.uni_marburg.powersort.benchmark.DummyComparable1;
import de.uni_marburg.powersort.benchmark.NaturalOrder;
import java.util.Arrays; import java.util.Arrays;

View File

@ -0,0 +1,960 @@
package de.uni_marburg.powersort.FinnSort;
/*
* Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2009 Google Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.util.Comparator;
/**
* A stable, adaptive, iterative mergesort that requires far fewer than
* n lg(n) comparisons when running on partially sorted arrays, while
* offering performance comparable to a traditional mergesort when run
* on random arrays. Like all proper mergesorts, this sort is stable and
* runs O(n log n) time (worst case). In the worst case, this sort requires
* temporary storage space for n/2 object references; in the best case,
* it requires only a small constant amount of space.
*
* This implementation was adapted from Tim Peters's list sort for
* Python, which is described in detail here:
*
* http://svn.python.org/projects/python/trunk/Objects/listsort.txt
*
* Tim's C code may be found here:
*
* http://svn.python.org/projects/python/trunk/Objects/listobject.c
*
* The underlying techniques are described in this paper (and may have
* even earlier origins):
*
* "Optimistic Sorting and Information Theoretic Complexity"
* Peter McIlroy
* SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
* pp 467-474, Austin, Texas, 25-27 January 1993.
*
* While the API to this class consists solely of static methods, it is
* (privately) instantiable; a TimSort instance holds the state of an ongoing
* sort, assuming the input array is large enough to warrant the full-blown
* TimSort. Small arrays are sorted in place, using a binary insertion sort.
*
* @author Josh Bloch
*/
class FasterFinnSort<T> {
/**
* This is the minimum sized sequence that will be merged. Shorter
* sequences will be lengthened by calling binarySort. If the entire
* array is less than this length, no merges will be performed.
*
* This constant should be a power of two. It was 64 in Tim Peter's C
* implementation, but 32 was empirically determined to work better in
* this implementation. In the unlikely event that you set this constant
* to be a number that's not a power of two, you'll need to change the
* {@link #minRunLength} computation.
*
* If you decrease this constant, you must change the stackLen
* computation in the TimSort constructor, or you risk an
* ArrayOutOfBounds exception. See listsort.txt for a discussion
* of the minimum stack length required as a function of the length
* of the array being sorted and the minimum merge sequence length.
*/
private static final int MIN_MERGE = 32;
/**
* The array being sorted.
*/
private final T[] a;
/**
* The comparator for this sort.
*/
private final Comparator<? super T> c;
/**
* When we get into galloping mode, we stay there until both runs win less
* often than MIN_GALLOP consecutive times.
*/
private static final int MIN_GALLOP = 7;
/**
* This controls when we get *into* galloping mode. It is initialized
* to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
* random data, and lower for highly structured data.
*/
private int minGallop = MIN_GALLOP;
/**
* Maximum initial size of tmp array, which is used for merging. The array
* can grow to accommodate demand.
*
* Unlike Tim's original C version, we do not allocate this much storage
* when sorting smaller arrays. This change was required for performance.
*/
private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
/**
* Temp storage for merges. A workspace array may optionally be
* provided in constructor, and if so will be used as long as it
* is big enough.
*/
private T[] tmp;
private int tmpBase; // base of tmp array slice
private int tmpLen; // length of tmp array slice
/**
* A stack of pending runs yet to be merged. Run i starts at
* address base[i] and extends for len[i] elements. It's always
* true (so long as the indices are in bounds) that:
*
* runBase[i] + runLen[i] == runBase[i + 1]
*
* so we could cut the storage for this, but it's a minor amount,
* and keeping all the info explicit simplifies the code.
*/
private int stackSize = 0; // Number of pending runs on stack
private final int[] runBase;
private final int[] runLen;
/**
* Creates a TimSort instance to maintain the state of an ongoing sort.
*
* @param a the array to be sorted
* @param c the comparator to determine the order of the sort
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
*/
private FasterFinnSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) {
this.a = a;
this.c = c;
// Allocate temp storage (which may be increased later if necessary)
int len = a.length;
int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
if (work == null || workLen < tlen || workBase + tlen > work.length) {
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
T[] newArray = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), tlen);
tmp = newArray;
tmpBase = 0;
tmpLen = tlen;
}
else {
tmp = work;
tmpBase = workBase;
tmpLen = workLen;
}
/*
* Allocate runs-to-be-merged stack (which cannot be expanded). The
* stack length requirements are described in listsort.txt. The C
* version always uses the same stack length (85), but this was
* measured to be too expensive when sorting "mid-sized" arrays (e.g.,
* 100 elements) in Java. Therefore, we use smaller (but sufficiently
* large) stack lengths for smaller arrays. The "magic numbers" in the
* computation below must be changed if MIN_MERGE is decreased. See
* the MIN_MERGE declaration above for more information.
* The maximum value of 49 allows for an array up to length
* Integer.MAX_VALUE-4, if array is filled by the worst case stack size
* increasing scenario. More explanations are given in section 4 of:
* http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
*/
int stackLen = (len < 120 ? 5 :
len < 1542 ? 10 :
len < 119151 ? 24 : 49);
runBase = new int[stackLen];
runLen = new int[stackLen];
}
/*
* The next method (package private and static) constitutes the
* entire API of this class.
*/
/**
* Sorts the given range, using the given workspace array slice
* for temp storage when possible. This method is designed to be
* invoked from public methods (in class Arrays) after performing
* any necessary array bounds checks and expanding parameters into
* the required forms.
*
* @param a the array to be sorted
* @param lo the index of the first element, inclusive, to be sorted
* @param hi the index of the last element, exclusive, to be sorted
* @param c the comparator to use
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
* @since 1.8
*/
static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
T[] work, int workBase, int workLen) {
assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
int nRemaining = hi - lo;
if (nRemaining < 2)
return; // Arrays of size 0 and 1 are always sorted
// If array is small, do a "mini-TimSort" with no merges
if (nRemaining < MIN_MERGE) {
int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
binarySort(a, lo, hi, lo + initRunLen, c);
return;
}
/**
* March over the array once, left to right, finding natural runs,
* extending short natural runs to minRun elements, and merging runs
* to maintain stack invariant.
*/
FasterFinnSort<T> ts = new FasterFinnSort<>(a, c, work, workBase, workLen);
int minRun = minRunLength(nRemaining);
do {
// Identify next run
int runLen = countRunAndMakeAscending(a, lo, hi, c);
// If run is short, extend to min(minRun, nRemaining)
if (runLen < minRun) {
int force = nRemaining <= minRun ? nRemaining : minRun;
binarySort(a, lo, lo + force, lo + runLen, c);
runLen = force;
}
// Push run onto pending-run stack, and maybe merge
ts.pushRun(lo, runLen);
ts.mergeCollapse();
// Advance to find next run
lo += runLen;
nRemaining -= runLen;
} while (nRemaining != 0);
// Merge all remaining runs to complete sort
assert lo == hi;
ts.mergeForceCollapse();
assert ts.stackSize == 1;
}
/**
* Sorts the specified portion of the specified array using a binary
* insertion sort. This is the best method for sorting small numbers
* of elements. It requires O(n log n) compares, but O(n^2) data
* movement (worst case).
*
* If the initial part of the specified range is already sorted,
* this method can take advantage of it: the method assumes that the
* elements from index {@code lo}, inclusive, to {@code start},
* exclusive are already sorted.
*
* @param a the array in which a range is to be sorted
* @param lo the index of the first element in the range to be sorted
* @param hi the index after the last element in the range to be sorted
* @param start the index of the first element in the range that is
* not already known to be sorted ({@code lo <= start <= hi})
* @param c comparator to used for the sort
*/
@SuppressWarnings("fallthrough")
private static <T> void binarySort(T[] a, int lo, int hi, int start,
Comparator<? super T> c) {
assert lo <= start && start <= hi;
if (start == lo)
start++;
for ( ; start < hi; start++) {
T pivot = a[start];
// Set left (and right) to the index where a[start] (pivot) belongs
int left = lo;
int right = start;
assert left <= right;
/*
* Invariants:
* pivot >= all in [lo, left).
* pivot < all in [right, start).
*/
while (left < right) {
int mid = (left + right) >>> 1;
if (c.compare(pivot, a[mid]) < 0)
right = mid;
else
left = mid + 1;
}
assert left == right;
/*
* The invariants still hold: pivot >= all in [lo, left) and
* pivot < all in [left, start), so pivot belongs at left. Note
* that if there are elements equal to pivot, left points to the
* first slot after them -- that's why this sort is stable.
* Slide elements over to make room for pivot.
*/
int n = start - left; // The number of elements to move
// Switch is just an optimization for arraycopy in default case
switch (n) {
case 2: a[left + 2] = a[left + 1];
case 1: a[left + 1] = a[left];
break;
default: System.arraycopy(a, left, a, left + 1, n);
}
a[left] = pivot;
}
}
/**
* Returns the length of the run beginning at the specified position in
* the specified array and reverses the run if it is descending (ensuring
* that the run will always be ascending when the method returns).
*
* A run is the longest ascending sequence with:
*
* a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
*
* or the longest descending sequence with:
*
* a[lo] > a[lo + 1] > a[lo + 2] > ...
*
* For its intended use in a stable mergesort, the strictness of the
* definition of "descending" is needed so that the call can safely
* reverse a descending sequence without violating stability.
*
* @param a the array in which a run is to be counted and possibly reversed
* @param lo index of the first element in the run
* @param hi index after the last element that may be contained in the run.
* It is required that {@code lo < hi}.
* @param c the comparator to used for the sort
* @return the length of the run beginning at the specified position in
* the specified array
*/
private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
Comparator<? super T> c) {
assert lo < hi;
int runHi = lo + 1;
if (runHi == hi)
return 1;
// Find end of run, and reverse range if descending
if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
runHi++;
reverseRange(a, lo, runHi);
} else { // Ascending
while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
runHi++;
}
return runHi - lo;
}
/**
* Reverse the specified range of the specified array.
*
* @param a the array in which a range is to be reversed
* @param lo the index of the first element in the range to be reversed
* @param hi the index after the last element in the range to be reversed
*/
private static void reverseRange(Object[] a, int lo, int hi) {
hi--;
while (lo < hi) {
Object t = a[lo];
a[lo++] = a[hi];
a[hi--] = t;
}
}
/**
* Returns the minimum acceptable run length for an array of the specified
* length. Natural runs shorter than this will be extended with
* {@link #binarySort}.
*
* Roughly speaking, the computation is:
*
* If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return MIN_MERGE/2.
* Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
* is close to, but strictly less than, an exact power of 2.
*
* For the rationale, see listsort.txt.
*
* @param n the length of the array to be sorted
* @return the length of the minimum run to be merged
*/
private static int minRunLength(int n) {
assert n >= 0;
int r = 0; // Becomes 1 if any 1 bits are shifted off
while (n >= MIN_MERGE) {
r |= (n & 1);
n >>= 1;
}
return n + r;
}
/**
* Pushes the specified run onto the pending-run stack.
*
* @param runBase index of the first element in the run
* @param runLen the number of elements in the run
*/
private void pushRun(int runBase, int runLen) {
this.runBase[stackSize] = runBase;
this.runLen[stackSize] = runLen;
stackSize++;
}
/**
* Examines the stack of runs waiting to be merged and merges adjacent runs
* until the stack invariants are reestablished:
*
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
* 2. runLen[i - 2] > runLen[i - 1]
*
* This method is called each time a new run is pushed onto the stack,
* so the invariants are guaranteed to hold for i < stackSize upon
* entry to the method.
*
* Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
* Richard Bubel and Reiner Hahnle, this is fixed with respect to
* the analysis in "On the Worst-Case Complexity of TimSort" by
* Nicolas Auger, Vincent Jug, Cyril Nicaud, and Carine Pivoteau.
*/
private void mergeCollapse() {
while (stackSize > 1) {
int n = stackSize - 2;
if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
if (runLen[n - 1] < runLen[n + 1])
n--;
} else if (n < 0 || runLen[n] > runLen[n + 1]) {
break; // Invariant is established
}
mergeAt(n);
}
}
/*
Backup mergeCollapse() von TimSort:
private void mergeCollapse() {
while (stackSize > 1) {
int n = stackSize - 2;
if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
if (runLen[n - 1] < runLen[n + 1])
n--;
} else if (n < 0 || runLen[n] > runLen[n + 1]) {
break; // Invariant is established
}
mergeAt(n);
}
}
*/
/**
* Merges all runs on the stack until only one remains. This method is
* called once, to complete the sort.
*/
private void mergeForceCollapse() {
while (stackSize > 1) {
int n = stackSize - 2;
if (n > 0 && runLen[n - 1] < runLen[n + 1])
n--;
mergeAt(n);
}
}
/**
* Merges the two runs at stack indices i and i+1. Run i must be
* the penultimate or antepenultimate run on the stack. In other words,
* i must be equal to stackSize-2 or stackSize-3.
*
* @param i stack index of the first of the two runs to merge
*/
private void mergeAt(int i) {
assert stackSize >= 2;
assert i >= 0;
assert i == stackSize - 2 || i == stackSize - 3;
int base1 = runBase[i];
int len1 = runLen[i];
int base2 = runBase[i + 1];
int len2 = runLen[i + 1];
assert len1 > 0 && len2 > 0;
assert base1 + len1 == base2;
/*
* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run (i+1) goes away in any case.
*/
runLen[i] = len1 + len2;
if (i == stackSize - 3) {
runBase[i + 1] = runBase[i + 2];
runLen[i + 1] = runLen[i + 2];
}
stackSize--;
/*
* Find where the first element of run2 goes in run1. Prior elements
* in run1 can be ignored (because they're already in place).
*/
int k = gallopRight(a[base2], a, base1, len1, 0, c);
assert k >= 0;
base1 += k;
len1 -= k;
if (len1 == 0)
return;
/*
* Find where the last element of run1 goes in run2. Subsequent elements
* in run2 can be ignored (because they're already in place).
*/
len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
assert len2 >= 0;
if (len2 == 0)
return;
// Merge remaining runs, using tmp array with min(len1, len2) elements
if (len1 <= len2)
mergeLo(base1, len1, base2, len2);
else
mergeHi(base1, len1, base2, len2);
}
/**
* Locates the position at which to insert the specified key into the
* specified sorted range; if the range contains an element equal to key,
* returns the index of the leftmost equal element.
*
* @param key the key whose insertion point to search for
* @param a the array in which to search
* @param base the index of the first element in the range
* @param len the length of the range; must be > 0
* @param hint the index at which to begin the search, 0 <= hint < n.
* The closer hint is to the result, the faster this method will run.
* @param c the comparator used to order the range, and to search
* @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
* pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
* In other words, key belongs at index b + k; or in other words,
* the first k elements of a should precede key, and the last n - k
* should follow it.
*/
private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
Comparator<? super T> c) {
assert len > 0 && hint >= 0 && hint < len;
int lastOfs = 0;
int ofs = 1;
if (c.compare(key, a[base + hint]) > 0) {
// Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
int maxOfs = len - hint;
while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) // int overflow
ofs = maxOfs;
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to base
lastOfs += hint;
ofs += hint;
} else { // key <= a[base + hint]
// Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
final int maxOfs = hint + 1;
while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) // int overflow
ofs = maxOfs;
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to base
int tmp = lastOfs;
lastOfs = hint - ofs;
ofs = hint - tmp;
}
assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
/*
* Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
* to the right of lastOfs but no farther right than ofs. Do a binary
* search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
*/
lastOfs++;
while (lastOfs < ofs) {
int m = lastOfs + ((ofs - lastOfs) >>> 1);
if (c.compare(key, a[base + m]) > 0)
lastOfs = m + 1; // a[base + m] < key
else
ofs = m; // key <= a[base + m]
}
assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
return ofs;
}
/**
* Like gallopLeft, except that if the range contains an element equal to
* key, gallopRight returns the index after the rightmost equal element.
*
* @param key the key whose insertion point to search for
* @param a the array in which to search
* @param base the index of the first element in the range
* @param len the length of the range; must be > 0
* @param hint the index at which to begin the search, 0 <= hint < n.
* The closer hint is to the result, the faster this method will run.
* @param c the comparator used to order the range, and to search
* @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
*/
private static <T> int gallopRight(T key, T[] a, int base, int len,
int hint, Comparator<? super T> c) {
assert len > 0 && hint >= 0 && hint < len;
int ofs = 1;
int lastOfs = 0;
if (c.compare(key, a[base + hint]) < 0) {
// Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
int maxOfs = hint + 1;
while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) // int overflow
ofs = maxOfs;
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to b
int tmp = lastOfs;
lastOfs = hint - ofs;
ofs = hint - tmp;
} else { // a[b + hint] <= key
// Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
int maxOfs = len - hint;
while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) // int overflow
ofs = maxOfs;
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to b
lastOfs += hint;
ofs += hint;
}
assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
/*
* Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
* the right of lastOfs but no farther right than ofs. Do a binary
* search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
*/
lastOfs++;
while (lastOfs < ofs) {
int m = lastOfs + ((ofs - lastOfs) >>> 1);
if (c.compare(key, a[base + m]) < 0)
ofs = m; // key < a[b + m]
else
lastOfs = m + 1; // a[b + m] <= key
}
assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
return ofs;
}
/**
* Merges two adjacent runs in place, in a stable fashion. The first
* element of the first run must be greater than the first element of the
* second run (a[base1] > a[base2]), and the last element of the first run
* (a[base1 + len1-1]) must be greater than all elements of the second run.
*
* For performance, this method should be called only when len1 <= len2;
* its twin, mergeHi should be called if len1 >= len2. (Either method
* may be called if len1 == len2.)
*
* @param base1 index of first element in first run to be merged
* @param len1 length of first run to be merged (must be > 0)
* @param base2 index of first element in second run to be merged
* (must be aBase + aLen)
* @param len2 length of second run to be merged (must be > 0)
*/
private void mergeLo(int base1, int len1, int base2, int len2) {
assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
// Copy first run into temp array
T[] a = this.a; // For performance
T[] tmp = ensureCapacity(len1);
int cursor1 = tmpBase; // Indexes into tmp array
int cursor2 = base2; // Indexes int a
int dest = base1; // Indexes int a
System.arraycopy(a, base1, tmp, cursor1, len1);
// Move first element of second run and deal with degenerate cases
a[dest++] = a[cursor2++];
if (--len2 == 0) {
System.arraycopy(tmp, cursor1, a, dest, len1);
return;
}
if (len1 == 1) {
System.arraycopy(a, cursor2, a, dest, len2);
a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
return;
}
Comparator<? super T> c = this.c; // Use local variable for performance
int minGallop = this.minGallop; // " " " " "
outer:
while (true) {
int count1 = 0; // Number of times in a row that first run won
int count2 = 0; // Number of times in a row that second run won
/*
* Do the straightforward thing until (if ever) one run starts
* winning consistently.
*/
do {
assert len1 > 1 && len2 > 0;
if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
a[dest++] = a[cursor2++];
count2++;
count1 = 0;
if (--len2 == 0)
break outer;
} else {
a[dest++] = tmp[cursor1++];
count1++;
count2 = 0;
if (--len1 == 1)
break outer;
}
} while ((count1 | count2) < minGallop);
/*
* One run is winning so consistently that galloping may be a
* huge win. So try that, and continue galloping until (if ever)
* neither run appears to be winning consistently anymore.
*/
do {
assert len1 > 1 && len2 > 0;
count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
if (count1 != 0) {
System.arraycopy(tmp, cursor1, a, dest, count1);
dest += count1;
cursor1 += count1;
len1 -= count1;
if (len1 <= 1) // len1 == 1 || len1 == 0
break outer;
}
a[dest++] = a[cursor2++];
if (--len2 == 0)
break outer;
count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
if (count2 != 0) {
System.arraycopy(a, cursor2, a, dest, count2);
dest += count2;
cursor2 += count2;
len2 -= count2;
if (len2 == 0)
break outer;
}
a[dest++] = tmp[cursor1++];
if (--len1 == 1)
break outer;
minGallop--;
} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
if (minGallop < 0)
minGallop = 0;
minGallop += 2; // Penalize for leaving gallop mode
} // End of "outer" loop
this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
if (len1 == 1) {
assert len2 > 0;
System.arraycopy(a, cursor2, a, dest, len2);
a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
} else if (len1 == 0) {
throw new IllegalArgumentException(
"Comparison method violates its general contract!");
} else {
assert len2 == 0;
assert len1 > 1;
System.arraycopy(tmp, cursor1, a, dest, len1);
}
}
/**
* Like mergeLo, except that this method should be called only if
* len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
* may be called if len1 == len2.)
*
* @param base1 index of first element in first run to be merged
* @param len1 length of first run to be merged (must be > 0)
* @param base2 index of first element in second run to be merged
* (must be aBase + aLen)
* @param len2 length of second run to be merged (must be > 0)
*/
private void mergeHi(int base1, int len1, int base2, int len2) {
assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
// Copy second run into temp array
T[] a = this.a; // For performance
T[] tmp = ensureCapacity(len2);
int tmpBase = this.tmpBase;
System.arraycopy(a, base2, tmp, tmpBase, len2);
int cursor1 = base1 + len1 - 1; // Indexes into a
int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
int dest = base2 + len2 - 1; // Indexes into a
// Move last element of first run and deal with degenerate cases
a[dest--] = a[cursor1--];
if (--len1 == 0) {
System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
return;
}
if (len2 == 1) {
dest -= len1;
cursor1 -= len1;
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
a[dest] = tmp[cursor2];
return;
}
Comparator<? super T> c = this.c; // Use local variable for performance
int minGallop = this.minGallop; // " " " " "
outer:
while (true) {
int count1 = 0; // Number of times in a row that first run won
int count2 = 0; // Number of times in a row that second run won
/*
* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
do {
assert len1 > 0 && len2 > 1;
if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
a[dest--] = a[cursor1--];
count1++;
count2 = 0;
if (--len1 == 0)
break outer;
} else {
a[dest--] = tmp[cursor2--];
count2++;
count1 = 0;
if (--len2 == 1)
break outer;
}
} while ((count1 | count2) < minGallop);
/*
* One run is winning so consistently that galloping may be a
* huge win. So try that, and continue galloping until (if ever)
* neither run appears to be winning consistently anymore.
*/
do {
assert len1 > 0 && len2 > 1;
count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
if (count1 != 0) {
dest -= count1;
cursor1 -= count1;
len1 -= count1;
System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
if (len1 == 0)
break outer;
}
a[dest--] = tmp[cursor2--];
if (--len2 == 1)
break outer;
count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
if (count2 != 0) {
dest -= count2;
cursor2 -= count2;
len2 -= count2;
System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
if (len2 <= 1) // len2 == 1 || len2 == 0
break outer;
}
a[dest--] = a[cursor1--];
if (--len1 == 0)
break outer;
minGallop--;
} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
if (minGallop < 0)
minGallop = 0;
minGallop += 2; // Penalize for leaving gallop mode
} // End of "outer" loop
this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
if (len2 == 1) {
assert len1 > 0;
dest -= len1;
cursor1 -= len1;
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
} else if (len2 == 0) {
throw new IllegalArgumentException(
"Comparison method violates its general contract!");
} else {
assert len1 == 0;
assert len2 > 0;
System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
}
}
/**
* Ensures that the external array tmp has at least the specified
* number of elements, increasing its size if necessary. The size
* increases exponentially to ensure amortized linear time complexity.
*
* @param minCapacity the minimum required capacity of the tmp array
* @return tmp, whether or not it grew
*/
private T[] ensureCapacity(int minCapacity) {
if (tmpLen < minCapacity) {
// Compute smallest power of 2 > minCapacity
int newSize = -1 >>> Integer.numberOfLeadingZeros(minCapacity);
newSize++;
if (newSize < 0) // Not bloody likely!
newSize = minCapacity;
else
newSize = Math.min(newSize, a.length >>> 1);
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
T[] newArray = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), newSize);
tmp = newArray;
tmpLen = newSize;
tmpBase = 0;
}
return tmp;
}
}

View File

@ -5,60 +5,70 @@ import static java.lang.Math.*;
public class FinnSort { public class FinnSort {
private static final ArrayList<Run> runs = new ArrayList<>(); private static ArrayList<Run> runs;
static void sort(Integer[] a) { public static <T> void sort(T[] a, Comparator<? super T> c) {
runs = new ArrayList<>();
int n = a.length; int n = a.length;
int i = 0; int i = 0;
int j = extendRunRight(a, i); int j = extendRunRight(a, i, c);
printList(a); printList(a, c);
runs.add(new Run(i, j, 0)); runs.add(new Run(i, j, 0));
i = j; i = j;
while (i < n) { while (i < n) {
j = extendRunRight(a, i); j = extendRunRight(a, i, c);
//printRuns(); //printRuns();
int p = power(runs.getLast(), new Run(i, j, 0), n); int p = power(runs.getLast(), new Run(i, j, 0), n);
while (runs.size() >= 2 && p < power(runs.getLast(), runs.get(runs.size() - 2), n)) { while (runs.size() >= 2 && p < power(runs.getLast(), runs.get(runs.size() - 2), n)) {
basicMerge(a, runs.removeFirst(), runs.removeFirst()); basicMerge(a, runs.removeLast(), runs.removeLast(), c);
} }
runs.add(new Run(i, j, p)); runs.add(new Run(i, j, p));
i = j; i = j;
} }
while (runs.size() >= 2) { while (runs.size() >= 2) {
basicMerge(a, runs.removeLast(), runs.removeLast()); basicMerge(a, runs.removeLast(), runs.removeLast(), c);
} }
} }
private static void basicMerge(Integer[] a, Run r1, Run r2) { private static <T> void basicMerge(T[] a, Run r1, Run r2, Comparator<? super T> c) {
ArrayList<Integer> run1 = new ArrayList<>(Arrays.asList(a).subList(r1.start, r1.end)); ArrayList<T> run1 = new ArrayList<>(Arrays.asList(a).subList(r1.start, r1.end));
ArrayList<Integer> run2 = new ArrayList<>(Arrays.asList(a).subList(r2.start, r2.end)); ArrayList<T> run2 = new ArrayList<>(Arrays.asList(a).subList(r2.start, r2.end));
ArrayList<Integer> merge = new ArrayList<>(); ArrayList<T> merge = new ArrayList<>();
while (!run1.isEmpty() || !run2.isEmpty()) { while (!run1.isEmpty() && !run2.isEmpty()) {
if (run2.isEmpty() || !run1.isEmpty() && run1.getFirst() < run2.getFirst()) { if (c.compare(run1.getFirst(), run2.getFirst()) < 0) {
merge.add(run1.removeFirst()); merge.add(run1.removeFirst());
} else { } else {
merge.add(run2.removeFirst()); merge.add(run2.removeFirst());
} }
} }
while (!run1.isEmpty()) {
merge.add(run1.removeFirst());
}
while (!run2.isEmpty()) {
merge.add(run2.removeFirst());
}
System.arraycopy(merge.toArray(), 0, a, min(r1.start, r2.start), merge.size()); System.arraycopy(merge.toArray(), 0, a, min(r1.start, r2.start), merge.size());
Run r = new Run(min(r1.start, r2.start), max(r1.end, r2.end), min(r1.power, r2.power)); Run r = new Run(min(r1.start, r2.start), max(r1.end, r2.end), min(r1.power, r2.power));
runs.add(r); runs.add(r);
printList(a); printList(a, c);
} }
private static int extendRunRight(Integer[] a, int i) { private static <T> int extendRunRight(T[] a, int i, Comparator<? super T> c) {
int j = i + 1; int j = i + 1;
while (j < a.length && a[j-1] <= a[j]) { while (j < a.length && c.compare(a[j-1], a[j]) <= 0) {
j++; j++;
} }
return j; return j;
@ -87,12 +97,12 @@ public class FinnSort {
} }
System.out.println(s); System.out.println(s);
} }
public static void printList(Integer[] arr) { public static <T> void printList(T[] arr, Comparator<? super T> c) {
String s = ""; String s = "";
int i = 0; int i = 0;
while (i < arr.length) { while (i < arr.length) {
String run = "["; String run = "[";
int j = extendRunRight(arr, i); int j = extendRunRight(arr, i, c);
for (int t = i; t < j; t++) { for (int t = i; t < j; t++) {
run += arr[t] + ", "; run += arr[t] + ", ";
} }
@ -101,13 +111,4 @@ public class FinnSort {
} }
System.out.println(s); System.out.println(s);
} }
public static void main(String[] args) {
Integer[] numbers = new Integer[]{24, 25, 26, 27, 28, 21, 22, 23, 18, 19, 20, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 1, 2};
sort(numbers);
System.out.println("Result: ");
System.out.println(new ArrayList<>(List.of(numbers)));
}
} }

View File

@ -3,7 +3,7 @@ package de.uni_marburg.powersort.benchmark;
/** /**
* A class for tiny, comparable objects. * A class for tiny, comparable objects.
*/ */
record DummyComparable1(int id) implements Comparable<DummyComparable1> { public record DummyComparable1(int id) implements Comparable<DummyComparable1> {
@Override @Override
public int compareTo(DummyComparable1 other) { public int compareTo(DummyComparable1 other) {
return id - other.id; return id - other.id;

View File

@ -4,32 +4,44 @@ public class IntegerArray {
private IntegerArray() { private IntegerArray() {
} }
public static Integer[] random(final int length) { public static Integer[] random(final int length, final long seed) {
return random(length, Integer.MIN_VALUE, Integer.MAX_VALUE);
}
public static Integer[] random(final int length, final int minInt, final int maxInt) {
final Integer[] list = new Integer[length]; final Integer[] list = new Integer[length];
for (int i = 0; i < length; i++) { for (int i = 0; i < length; i++) {
list[i] = RandomInt.integer(minInt, maxInt); list[i] = RandomInt.integer(seed);
} }
return list; return list;
} }
/** /**
* @return [start, start-1, ..., end+1, end] * @return [high, high-1, ..., low+1, low]
*/ */
public static Integer[] descending(final int start, final int end) { public static Integer[] descending(final int high, final int low) {
assert start > end; assert high >= low;
Integer[] list = new Integer[start - end + 1]; Integer[] list = new Integer[high - low + 1];
for (int i = 0; i < list.length; i++) { for (int i = 0; i < list.length; i++) {
int value = start - i; int value = high - i;
list[i] = value; list[i] = value;
} }
assert list[0] == start; assert list[0] == high;
assert list[list.length - 1] == end; assert list[list.length - 1] == low;
return list;
}
/**
* @return [low, low-1, ..., high+1, high]
*/
public static Integer[] ascending(final int low, final int high) {
assert low <= high;
Integer[] list = new Integer[high - low + 1];
for (int i = 0; i < list.length; i++) {
int value = low + i;
list[i] = value;
}
assert list[0] == low;
assert list[list.length - 1] == high;
return list; return list;
} }
} }

View File

@ -1,80 +1,50 @@
package de.uni_marburg.powersort.benchmark; package de.uni_marburg.powersort.benchmark;
import de.uni_marburg.powersort.sort.DummySort; import de.uni_marburg.powersort.data.DataEnum;
import de.uni_marburg.powersort.sort.MergeSort; import de.uni_marburg.powersort.sort.SortEnum;
import de.uni_marburg.powersort.sort.TimSort;
import de.uni_marburg.powersort.data.DescendingIntegers;
import de.uni_marburg.powersort.data.RandomIntegers;
import de.uni_marburg.powersort.data.ObjectSupplier; import de.uni_marburg.powersort.data.ObjectSupplier;
import java.util.Arrays; import java.util.EnumSet;
import java.util.List;
import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeUnit;
import java.util.function.Supplier;
/** /**
* Custom benchmark. * Custom benchmark.
*/ */
public class Main { public class Main {
public static void main(final String[] args) { public static void main(final String[] args) {
final SortImpl[] sortImplementations = getSortImplementations(); final EnumSet<SortEnum> sortImplementations = getSortImplementations();
final List<Supplier<ObjectSupplier>> sortInputSuppliers = getSortInputSuppliers(); final EnumSet<DataEnum> dataEnums = getSortInputSuppliers();
for (Supplier<ObjectSupplier> sortInputSupplier : sortInputSuppliers) { for (DataEnum dataEnum : dataEnums) {
ObjectSupplier objectSupplier = sortInputSupplier.get(); ObjectSupplier objectSupplier = dataEnum.getObjectSupplier();
System.out.println("\n" + objectSupplier.title()); System.out.println(dataEnum);
for (SortImpl sortImplementation : sortImplementations) { for (SortEnum sortImplementation : sortImplementations) {
Object[] sortInput = objectSupplier.get(); Object[] sortInput = objectSupplier.getCopy();
// TODO: JVM warmup!
final long startNanos = System.nanoTime(); final long startNanos = System.nanoTime();
sortImplementation.sort(sortInput); sortImplementation.getSortImpl().sort(sortInput);
final long stopNanos = System.nanoTime(); final long stopNanos = System.nanoTime();
final long durNanos = stopNanos - startNanos; final long durNanos = stopNanos - startNanos;
final long durMillis = TimeUnit.NANOSECONDS.toMillis(durNanos); final long durMillis = TimeUnit.NANOSECONDS.toMillis(durNanos);
final String durFormatted = LongFormatter.formatUnderscore(durMillis); final String durFormatted = LongFormatter.formatUnderscore(durMillis);
System.out.println(durFormatted + "," + sortImplementation.title); System.out.println(durFormatted + "," + sortImplementation);
} }
} }
} }
static SortImpl[] getSortImplementations() { static EnumSet<SortEnum> getSortImplementations() {
return new SortImpl[]{ return EnumSet.allOf(SortEnum.class);
new SortImpl("DummySort") {
@Override
public void sort(Object[] a) {
DummySort.sort(a, 0, a.length, NaturalOrder.INSTANCE, null, 0, 0);
}
},
new SortImpl("TimSort") {
@Override
public void sort(Object[] a) {
TimSort.sort(a, 0, a.length, NaturalOrder.INSTANCE, null, 0, 0);
}
},
new SortImpl("MergeSort") {
@Override
public void sort(Object[] a) {
MergeSort.legacyMergeSort(a, NaturalOrder.INSTANCE);
}
}
};
} }
/** /**
* The returned ObjectSupplier objects are wrapped by Supplier objects. * The returned ObjectSupplier objects are wrapped by DataEnum objects.
* This way they are lazily created on their first access. * This way they are lazily created on their first access with DataEnum.get().
* This saves memory if we work with large lists. * This saves memory if we work with large lists.
*/ */
static List<Supplier<ObjectSupplier>> getSortInputSuppliers() { static EnumSet<DataEnum> getSortInputSuppliers() {
return Arrays.asList( return EnumSet.allOf(DataEnum.class);
// Three different random lists.
RandomIntegers::new,
RandomIntegers::new,
RandomIntegers::new,
// One descending list.
DescendingIntegers::new
);
} }
} }

View File

@ -5,11 +5,11 @@ import java.util.Comparator;
/** /**
* Copied from JDK23 Arrays.java * Copied from JDK23 Arrays.java
*/ */
final class NaturalOrder implements Comparator<Object> { public final class NaturalOrder implements Comparator<Object> {
@SuppressWarnings("unchecked") @SuppressWarnings("unchecked")
public int compare(Object first, Object second) { public int compare(Object first, Object second) {
return ((Comparable<Object>) first).compareTo(second); return ((Comparable<Object>) first).compareTo(second);
} }
static final NaturalOrder INSTANCE = new NaturalOrder(); public static final NaturalOrder INSTANCE = new NaturalOrder();
} }

View File

@ -1,5 +1,7 @@
package de.uni_marburg.powersort.benchmark; package de.uni_marburg.powersort.benchmark;
import java.util.Random;
/** /**
* Provides utility methods related to random integers. * Provides utility methods related to random integers.
*/ */
@ -8,15 +10,33 @@ public final class RandomInt {
} }
/** /**
* Returns a random integer.
*
* @return A random integer. * @return A random integer.
*/ */
public static int integer() { public static int integer() {
return integer(Integer.MIN_VALUE, Integer.MAX_VALUE); return integer(Integer.MIN_VALUE, Integer.MAX_VALUE);
} }
public static int integer(final int minInt, final int maxInt) { public static int integer(final int minInt, final int maxInt) {
final double random = Math.random() * (maxInt - minInt) - minInt; final double rand01 = Math.random();
return (int) Math.round(random); return helper(minInt, maxInt, rand01);
}
/**
* The returned random integer to return is determined by the given seed.
*
* @return A random integer.
*/
public static int integer(final long seed) {
Random random = new Random(seed);
final double rand01 = random.nextDouble();
return helper(Integer.MIN_VALUE, Integer.MAX_VALUE, rand01);
}
/**
* @param rand01 Random value in range [0,1)
*/
private static int helper(final int minInt, final int maxInt, final double rand01) {
final double randMinMax = rand01 * (maxInt - minInt) - minInt;
return (int) Math.round(randMinMax);
} }
} }

View File

@ -0,0 +1,9 @@
package de.uni_marburg.powersort.data;
import de.uni_marburg.powersort.benchmark.IntegerArray;
public class AscendingIntegers extends IntegerSupplier {
public AscendingIntegers(int size) {
super(IntegerArray.ascending( 1, size));
}
}

View File

@ -0,0 +1,35 @@
package de.uni_marburg.powersort.data;
import de.uni_marburg.powersort.benchmark.IntegerArray;
public class AscendingRuns extends IntegerSupplier {
/**
* Can be used e.g. to construct this array:
* [0, 1, 2, 3, -2, -1, 0, 1, -4, -3, -2, -1]
*
* @param runLength >= 1
*/
public static AscendingRuns newAscendingRuns(
int numOfRuns,
int runLength,
int decreaseBetweenRuns
) {
if(numOfRuns < 0 || runLength <= 0){
throw new IllegalArgumentException();
}
Integer[] data = new Integer[numOfRuns * runLength];
for (int i = 0; i < numOfRuns; i++) {
int low = decreaseBetweenRuns * i;
int high = low + runLength - 1;
Integer[] run = IntegerArray.ascending(low, high);
System.arraycopy(run, 0, data, i * runLength, run.length);
}
return new AscendingRuns(data);
}
private AscendingRuns(Integer[] readonly) {
super(readonly);
}
}

View File

@ -0,0 +1,26 @@
package de.uni_marburg.powersort.data;
public enum DataEnum {
RANDOM_INTEGERS,
ASCENDING_INTEGERS,
DESCENDING_INTEGERS,
ASCENDING_RUNS,
ASCENDING_RUNS_WITH_OVERLAP;
public ObjectSupplier getObjectSupplier() {
// We use a seed to get the same random list every time -> Repeatable benchmarks on same input data!
// final long seed = 3651660232967549736L; // System.nanoTime() ++ Math.random()
final long seed = 140506881906827520L; // (long) 'P' * (long) 'O' *(long) 'W' * (long) 'E' * (long) 'R' * (long) 'S' * (long) 'O' * (long) 'R' * (long) 'T';
int longListSize = 50_000_000;
return switch (this) {
case RANDOM_INTEGERS -> new RandomIntegers(longListSize, seed);
case ASCENDING_INTEGERS -> new AscendingIntegers(longListSize);
case DESCENDING_INTEGERS -> new DescendingIntegers(longListSize);
case ASCENDING_RUNS -> AscendingRuns.newAscendingRuns(10_000, 10_000, -10_000);
case ASCENDING_RUNS_WITH_OVERLAP -> AscendingRuns.newAscendingRuns(10_000, 10_000, -5_000);
};
}
}

View File

@ -1,17 +1,9 @@
package de.uni_marburg.powersort.data; package de.uni_marburg.powersort.data;
import de.uni_marburg.powersort.benchmark.IntegerArray; import de.uni_marburg.powersort.benchmark.IntegerArray;
import de.uni_marburg.powersort.benchmark.LongFormatter;
public class DescendingIntegers extends IntegerSupplier { public class DescendingIntegers extends IntegerSupplier {
private static final int SIZE = 50_000_000; public DescendingIntegers(int size) {
super(IntegerArray.descending(size, 1));
public DescendingIntegers() {
super(IntegerArray.descending(SIZE, 0));
}
@Override
public String title() {
return "Array of " + LongFormatter.formatUnderscore(SIZE) + " descending Integer objects.";
} }
} }

View File

@ -6,7 +6,7 @@ public abstract class IntegerSupplier extends ObjectSupplier {
} }
@Override @Override
public Integer[] get() { public Integer[] getCopy() {
return (Integer[]) super.get(); return (Integer[]) super.getCopy();
} }
} }

View File

@ -3,21 +3,16 @@ package de.uni_marburg.powersort.data;
import java.util.Arrays; import java.util.Arrays;
public abstract class ObjectSupplier { public abstract class ObjectSupplier {
final Object[] readOnly; /* package-protected */ final Object[] readOnly;
ObjectSupplier(Object[] readOnly) { ObjectSupplier(Object[] readOnly) {
this.readOnly = readOnly; this.readOnly = readOnly;
} }
/**
* Descriptive title for the array of objects represented by this object.
*/
public abstract String title();
/** /**
* @return A fresh copy of the array of objects represented by this object. * @return A fresh copy of the array of objects represented by this object.
*/ */
public Object[] get(){ public Object[] getCopy(){
return Arrays.copyOf(readOnly, readOnly.length); return Arrays.copyOf(readOnly, readOnly.length);
} }
} }

View File

@ -1,17 +1,9 @@
package de.uni_marburg.powersort.data; package de.uni_marburg.powersort.data;
import de.uni_marburg.powersort.benchmark.IntegerArray; import de.uni_marburg.powersort.benchmark.IntegerArray;
import de.uni_marburg.powersort.benchmark.LongFormatter;
public class RandomIntegers extends IntegerSupplier { public class RandomIntegers extends IntegerSupplier {
private static final int SIZE = 50_000_000; public RandomIntegers(final int size, final long seed) {
super(IntegerArray.random(size, seed));
public RandomIntegers() {
super(IntegerArray.random(SIZE));
}
@Override
public String title() {
return "Array of " + LongFormatter.formatUnderscore(SIZE) + " random Integer objects.";
} }
} }

View File

@ -0,0 +1,298 @@
package de.uni_marburg.powersort.msort;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.IntStream;
public class IMPL_M_1 {
private IMPL_M_1() {}
/**
* Sorts the given range, using the given workspace array slice
* for temp storage when possible. This method is designed to be
* invoked from public methods (in class Arrays) after performing
* any necessary array bounds checks and expanding parameters into
* the required forms.
*
* @param a the array to be sorted
* @param lo the index of the first element, inclusive, to be sorted
* @param hi the index of the last element, exclusive, to be sorted
* @param c the comparator to use
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
* @since 1.8
*/
protected static int MERGE_COST = 0;
// Example usage
// int[] runs = new int[] {5, 3, 3, 14, 1, 2}; // example from slides
// //runs = new int[]{9, 16, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
//
// ArrayList<Integer> a = new ArrayList<>(IntStream.range(0, Arrays.stream(runs).sum()).boxed().collect(Collectors.toList()));
//
// System.out.println();
// fillWithAscRunsHighToLow(a, runs);
// MERGE_COST = 0;
// System.out.println("Sorting with Powersort:");
// powersort(a, this::extendRunIncreasingOnly);
// System.out.println("Merge cost: " + MERGE_COST);
// runs = [5,3,3,14,1,2];
// runs = [9,16,7,7,7,7,7,7,7,7,7,7];
//
// a = list(range(sum(runs)));
// fill_with_asc_runs_high_to_low(a, runs);
// MERGE_COST = 0;
// System.out.println("Sorting with Powersort:");
// powersort(a, extendRunIncreasingOnly);
// System.out.println("Merge cost: " + MERGE_COST);
public static void fillWithAscRunsHighToLow(List<Integer> A, int[] runLengths, int runLenFactor) {
int n = A.size();
assert IntStream.of(runLengths).sum() * runLenFactor == n;
for (int i = 0; i < n; i++) {
A.set(i, n - i);
}
int i = 0;
for (int l : runLengths) {
int L = l * runLenFactor;
List<Integer> sublist = A.subList(i, i + L);
Collections.sort(sublist);
i += L;
}
}
private static List<Integer> merge(List<Integer> run1, List<Integer> run2) {
List<Integer> result = new ArrayList<>();
while (!run1.isEmpty() && !run2.isEmpty()) {
if (run1.get(0) < run2.get(0)) {
result.add(run1.remove(0));
} else {
result.add(run2.remove(0));
}
}
result.addAll(run1);
result.addAll(run2);
return result;
}
private static void mergeInplace(List<Integer> a, int i, int m, int j) {
System.out.printf("Merge(%d, %d, %d)%n", i, m, j);
MERGE_COST += j - i;
List<Integer> sublist = merge(
new ArrayList<>(a.subList(i, m)),
new ArrayList<>(a.subList(m, j))
);
for (int k = 0; k < sublist.size(); k++) {
a.set(i + k, sublist.get(k));
}
}
static int extendRun(List<Integer> a, int i) {
if (i == a.size() - 1) {
return i + 1;
}
int j = i + 1;
if (a.get(i) <= a.get(j)) {
while (j < a.size() && a.get(j - 1) <= a.get(j)) {
j++;
}
} else {
while (j < a.size() && a.get(j - 1) > a.get(j)) {
j++;
}
List<Integer> sublist = a.subList(i, j);
Collections.reverse(sublist);
}
return j;
}
private static int extendRunIncreasingOnly(List<Integer> a, int i) {
if (i == a.size() - 1) {
return i + 1;
}
int j = i + 1;
while (j < a.size() && a.get(j - 1) <= a.get(j)) {
j++;
}
return j;
}
public static int power(int[] run1, int[] run2, int n) {
int i1 = run1[0], n1 = run1[1];
int i2 = run2[0], n2 = run2[1];
assert i1 >= 0;
assert i2 == i1 + n1;
assert n1 >= 1 && n2 >= 1;
assert i2 + n2 <= n;
double a = ((i1 + n1 / 2.0d) / n);
double b = ((i2 + n2 / 2.0d) / n);
int l = 0;
while (Math.floor(a * Math.pow(2, l)) == Math.floor(b * Math.pow(2, l))) {
l++;
}
return l;
}
public static int powerFast(int[] run1, int[] run2, int n) {
int i1 = run1[0], n1 = run1[1];
int i2 = run2[0], n2 = run2[1];
int a = 2 * i1 + n1;
int b = a + n1 + n2;
int l = 0;
while (true) {
l++;
if (a >= n) {
assert b >= a;
a -= n;
b -= n;
} else if (b >= n) {
break;
}
assert a < b && b < n;
a <<= 1;
b <<= 1;
}
return l;
}
public static void mergeTopmost2(List<Integer> a, List<int[]> runs) {
assert runs.size() >= 2;
int[] Y = runs.get(runs.size() - 2);
int[] Z = runs.get(runs.size() - 1);
assert Z[0] == Y[0] + Y[1];
mergeInplace(a, Y[0], Z[0], Z[0] + Z[1]);
runs.set(runs.size() - 2, new int[] {Y[0], Y[1] + Z[1], Y[2]});
runs.remove(runs.size() - 1);
}
public static void powerSort(List<Integer> a) {
int n = a.size();
int i = 0;
List<int[]> runs = new ArrayList<>();
int j = extendRun(a, i);
runs.add(new int[] {i, j - i, 0});
i = j;
while (i < n) {
j = extendRun(a, i);
int p = power(runs.get(runs.size() - 1), new int[] {i, j - i}, n);
while (p <= runs.get(runs.size() - 1)[2]) {
mergeTopmost2(a, runs);
}
runs.add(new int[] {i, j - i, p});
i = j;
}
while (runs.size() >= 2) {
mergeTopmost2(a, runs);
}
}
/* """Fills the given array A with ascending runs of the given list of run
lengths.
More precisely, the array is first filled n, n-1, ..., 1
and then for i=0..l-1 segments of runLengths.get(i) * runLenFactor
are sorted ascending.
The sum of all lengths in runLengths times runLenFactor should be equal to the
length of A.
"""*/
/* static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
T[] work, int workBase, int workLen) {
assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
}*/
/*
public static final int MIN_MERGE=24;
public int mergeCost=0;
private final T []sortedArray;
public PowerSort(T[] sortedArray) {
super();
this.sortedArray = sortedArray;
}
ArrayList<Integer> run1 = new ArrayList<>();
ArrayList<Integer> run2 = new ArrayList<>();
private AbstractList<Integer> merge(ArrayList <Integer> run1, ArrayList<Integer> run2) {
ArrayList<Integer> result = new ArrayList<>();
while(run1.size() > 0 && run2.size() >0) {
if (run1.getFirst()<run2.getFirst()){
result.add(run1.getFirst());
run1.removeFirst();
}else {
result.add(run2.getFirst());
run2.removeFirst();
}
result.addAll(run1);
result.addAll(run2);
}
return result;
}
public void mergeInplace(int[] a, int[] i, int[] m, int[] j) {
//System.out.println("merge(" + i + "," + m + "," + j + ")");
System.out.printf("Merge(%d, %d, %d)%n", i, m, j);
// this.mergeCost += j - i;
for(int s =0; s < i.length && s< j.length ; s++) {
// int[] leftSubarray = copyOfRange(a, i, m);
// int[] rightSubarray = copyOfRange(a, m, j);
// int[] mergedSubarray = merge(leftSubarray, rightSubarray);
// System.arraycopy(mergedSubarray, 0, a, i, mergedSubarray.length);
//// mergeCost += j[s] - i[s];
// System.arraycopy(merge(Arrays.copyOfRange(a, i, m), Arrays.copyOfRange(a, m, j)), 0, a, i, j - i);
// a[i:j]=merge(a[i:m],a[m:j]);
}
}
public void power(int run1,int run2, int n) {
int i = run1;
int n1 = run1;
int j = run2;
int n2 = run2;
int a=(i + n1/2) / n;
int b=(j + n2/2) / n;
int l =0;
//while( Math.floor(a * 2**1)){
// Math.floor(b * );
// }
}
public void sorting(final int[] Array, final int left, final int right) {
}*/
}

View File

@ -24,6 +24,10 @@
* questions. * questions.
*/ */
/*
* Imported from OpenJDK git repo ComparableTimSort.java
*/
package de.uni_marburg.powersort.sort; package de.uni_marburg.powersort.sort;
/** /**

View File

@ -0,0 +1,22 @@
package de.uni_marburg.powersort.sort;
import de.uni_marburg.powersort.FinnSort.FinnSort;
import de.uni_marburg.powersort.benchmark.NaturalOrder;
public enum SortEnum {
// BUBBLE_SORT,
MERGE_SORT,
TIM_SORT,
FINN_SORT,
ASORT;
public SortImpl getSortImpl() {
return switch (this) {
// case BUBBLE_SORT -> array -> BubbleSort.sort(array, NaturalOrder.INSTANCE);
case MERGE_SORT -> array -> MergeSort.legacyMergeSort(array, NaturalOrder.INSTANCE);
case TIM_SORT -> array -> TimSort.sort(array, 0, array.length, NaturalOrder.INSTANCE, null, 0, 0);
case FINN_SORT -> array -> FinnSort.sort(array, NaturalOrder.INSTANCE);
case ASORT -> array -> ASort.sort(array, NaturalOrder.INSTANCE);
};
}
}

View File

@ -0,0 +1,5 @@
package de.uni_marburg.powersort.sort;
public interface SortImpl {
void sort(Object[] list);
}

View File

@ -24,6 +24,10 @@
* questions. * questions.
*/ */
/*
* Imported from OpenJDK git repo TimSort.java
*/
package de.uni_marburg.powersort.sort; package de.uni_marburg.powersort.sort;
import java.util.Comparator; import java.util.Comparator;

View File

@ -0,0 +1,41 @@
package de.uni_marburg.powersort;
import org.junit.jupiter.params.converter.SimpleArgumentConverter;
import java.util.Arrays;
public class JUnitUtil {
/**
* https://stackoverflow.com/a/46850299/6334421
*/
public static class IntArrayConverter extends SimpleArgumentConverter {
@Override
protected int[] convert(Object source, Class<?> targetType) {
if (source instanceof String s && int[].class.isAssignableFrom(targetType)) {
if (s.isEmpty()) {
return new int[0];
}
String[] strings = s.split("\\s*\\|\\s*");
return Arrays.stream(strings).mapToInt(Integer::valueOf).toArray();
} else {
throw new IllegalArgumentException("Conversion from " + source.getClass()
+ " to " + targetType + " not supported.");
}
}
}
public static class IntegerArrayConverter extends SimpleArgumentConverter {
@Override
protected Integer[] convert(Object source, Class<?> targetType) {
if (source instanceof String s && Integer[].class.isAssignableFrom(targetType)) {
if (s.isEmpty()) {
return new Integer[0];
}
String[] strings = s.split("\\s*\\|\\s*");
return Arrays.stream(strings).map(Integer::valueOf).toArray(Integer[]::new);
} else {
throw new IllegalArgumentException("Conversion from " + source.getClass()
+ " to " + targetType + " not supported.");
}
}
}
}

View File

@ -3,8 +3,10 @@ package de.uni_marburg.powersort.benchmark;
import org.junit.jupiter.api.Assertions; import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;
class RandomIntTest { class RandomIntTest {
protected RandomIntTest(){ protected RandomIntTest() {
// This constructor is intentionally empty. Nothing special is needed here. // This constructor is intentionally empty. Nothing special is needed here.
} }
@ -33,4 +35,14 @@ class RandomIntTest {
Assertions.fail("min or max not reached - not a random int generator"); Assertions.fail("min or max not reached - not a random int generator");
} }
@Test
void testReproducibility() {
long seed = 1337;
int expected = 2147483647;
long actual = RandomInt.integer(seed);
assertEquals(expected, actual);
}
} }

View File

@ -0,0 +1,35 @@
package de.uni_marburg.powersort.data;
import de.uni_marburg.powersort.JUnitUtil;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.converter.ConvertWith;
import org.junit.jupiter.params.provider.CsvSource;
import java.util.Arrays;
import static org.junit.jupiter.api.Assertions.*;
class AscendingRunsTest {
@ParameterizedTest
@CsvSource({
"0,1,-1,''",
"1,1,-1,0",
"1,2,-2,0|1",
"2,2,-2,0|1|-2|-1",
"2,4,-2,0|1|2|3|-2|-1|0|1",
})
void testAscendingRuns1(int numOfRuns, int runLength, int decreaseBetweenRuns, @ConvertWith(JUnitUtil.IntArrayConverter.class) int[] expected) {
Integer[] actualIntegers = AscendingRuns.newAscendingRuns(numOfRuns, runLength, decreaseBetweenRuns).getCopy();
int[] actual = Arrays.stream(actualIntegers).mapToInt(Integer::valueOf).toArray();
assertArrayEquals(expected, actual);
}
@ParameterizedTest
@CsvSource({
"1,0,-1",
"-1,1,-1",
})
void testAscendingRuns2(int numOfRuns, int runLength, int decreaseBetweenRuns) {
assertThrows(IllegalArgumentException.class, () -> AscendingRuns.newAscendingRuns(numOfRuns, runLength, decreaseBetweenRuns));
}
}

View File

@ -0,0 +1,37 @@
package de.uni_marburg.powersort.msort;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import org.junit.jupiter.api.Test;
import static de.uni_marburg.powersort.msort.IMPL_M_1.MERGE_COST;
import static de.uni_marburg.powersort.msort.IMPL_M_1.extendRun;
import static de.uni_marburg.powersort.msort.IMPL_M_1.fillWithAscRunsHighToLow;
import static de.uni_marburg.powersort.msort.IMPL_M_1.powerSort;
class PowerSortTest {
@Test
public void testWithOneInputList() {
List<Integer> list = new ArrayList<>(List.of(5, 2, 8, 12, 1, 6));
extendRun(list, 0);
System.out.println(list);
// example from slides he wrote this
int[] runs = {5, 3, 3, 14, 1, 2};
// runs = new int[]{9, 16, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
List<Integer> a = new ArrayList<>(IntStream.range(0, Arrays.stream(runs).sum()).boxed().collect(Collectors.toList()));
System.out.println();
fillWithAscRunsHighToLow(a, runs, 1);
MERGE_COST = 0;
System.out.println("Sorting with Powersort:");
powerSort(a);
System.out.println("Merge cost: " + MERGE_COST);
}
}

View File

@ -0,0 +1,7 @@
package de.uni_marburg.powersort.sort;
public class ASortTest extends AbstractSortTest {
ASortTest() {
sortAlg = SortEnum.ASORT;
}
}

View File

@ -0,0 +1,57 @@
package de.uni_marburg.powersort.sort;
import de.uni_marburg.powersort.JUnitUtil;
import de.uni_marburg.powersort.data.AscendingRuns;
import de.uni_marburg.powersort.data.DescendingIntegers;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.converter.ConvertWith;
import org.junit.jupiter.params.provider.CsvSource;
import java.util.Arrays;
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
public abstract class AbstractSortTest {
SortEnum sortAlg;
@ParameterizedTest
@CsvSource({
"''",
"1337",
"2|3|1",
"1|1",
"2|1|2",
})
void test1(@ConvertWith(JUnitUtil.IntegerArrayConverter.class) Integer[] array) {
sortAndCheckResult(array);
}
@ParameterizedTest
@CsvSource({
"3,7,-13",
"3,7,-3",
})
void test2(int numOfRuns, int runLength, int decreaseBetweenRuns) {
Integer[] array = AscendingRuns.newAscendingRuns(numOfRuns, runLength, decreaseBetweenRuns).getCopy();
sortAndCheckResult(array);
}
@ParameterizedTest
@CsvSource({
"2",
"3",
"13",
"1337",
})
void test2(int size) {
Integer[] array = new DescendingIntegers(size).getCopy();
sortAndCheckResult(array);
}
void sortAndCheckResult(Integer[] array){
Integer[] expected = Arrays.copyOf(array, array.length);
Arrays.sort(expected);
sortAlg.getSortImpl().sort(array);
assertArrayEquals(expected, array);
}
}

View File

@ -0,0 +1,7 @@
package de.uni_marburg.powersort.sort;
public class FinnSortTest extends AbstractSortTest {
FinnSortTest() {
sortAlg = SortEnum.FINN_SORT;
}
}