diff --git a/.gitignore b/.gitignore
index f72df32..7f936b2 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,4 +1,5 @@
/.idea
+/app/bin/
# Ignore Gradle project-specific cache directory
/.gradle
diff --git a/.idea/misc.xml b/.idea/misc.xml
index 5a00040..5a6579d 100644
--- a/.idea/misc.xml
+++ b/.idea/misc.xml
@@ -3,5 +3,5 @@
-
+
\ No newline at end of file
diff --git a/README.md b/README.md
index 72131f6..7c50e36 100644
--- a/README.md
+++ b/README.md
@@ -56,9 +56,3 @@ Run the task "test":
```shell
./gradlew test
```
-
-## TimSort
-
-Imported from
-- src/java.base/share/classes/java/util/TimSort.java
-- src/java.base/share/classes/java/util/ComparableTimSort.java
diff --git a/app/src/jmh/java/de/uni_marburg/powersort/benchmark/BenchmarkJmh.java b/app/src/jmh/java/de/uni_marburg/powersort/benchmark/BenchmarkJmh.java
deleted file mode 100644
index 77ea4d6..0000000
--- a/app/src/jmh/java/de/uni_marburg/powersort/benchmark/BenchmarkJmh.java
+++ /dev/null
@@ -1,49 +0,0 @@
-package de.uni_marburg.powersort.benchmark;
-
-import de.uni_marburg.powersort.sort.DummySort;
-import de.uni_marburg.powersort.sort.MergeSort;
-import de.uni_marburg.powersort.sort.TimSort;
-import de.uni_marburg.powersort.data.RandomIntegers;
-import org.openjdk.jmh.annotations.*;
-
-import java.util.concurrent.TimeUnit;
-
-// TODO: The parameters are way too low. Use for debugging only!
-@Fork(1)
-@Warmup(iterations = 3)
-@Measurement(iterations = 6)
-public class BenchmarkJmh {
- @State(Scope.Benchmark)
- public static class State1 {
- RandomIntegers d = new RandomIntegers();
- Integer[] a;
-
- // TODO: This is inaccurate.
- // How to create and use separate arrays for each warmup x iteration x sortAlgorithm ?
- @Setup(Level.Invocation)
- public void setup() {
- a = d.get();
- }
- }
-
- @BenchmarkMode(Mode.AverageTime)
- @OutputTimeUnit(TimeUnit.MILLISECONDS)
- @Benchmark
- public void rand1DummySort(State1 s) {
- DummySort.sort(s.a, 0, s.a.length, NaturalOrder.INSTANCE, null, 0, 0);
- }
-
- @BenchmarkMode(Mode.AverageTime)
- @OutputTimeUnit(TimeUnit.MILLISECONDS)
- @Benchmark
- public void rand1TimSort(State1 s) {
- TimSort.sort(s.a, 0, s.a.length, NaturalOrder.INSTANCE, null, 0, 0);
- }
-
- @BenchmarkMode(Mode.AverageTime)
- @OutputTimeUnit(TimeUnit.MILLISECONDS)
- @Benchmark
- public void rand1MergeSort(State1 s) {
- MergeSort.legacyMergeSort(s.a, NaturalOrder.INSTANCE);
- }
-}
diff --git a/app/src/jmh/java/de/uni_marburg/powersort/benchmark/MainJmh.java b/app/src/jmh/java/de/uni_marburg/powersort/benchmark/MainJmh.java
new file mode 100644
index 0000000..31cb83e
--- /dev/null
+++ b/app/src/jmh/java/de/uni_marburg/powersort/benchmark/MainJmh.java
@@ -0,0 +1,65 @@
+package de.uni_marburg.powersort.benchmark;
+
+import de.uni_marburg.powersort.data.DataEnum;
+import de.uni_marburg.powersort.data.ObjectSupplier;
+import de.uni_marburg.powersort.sort.SortEnum;
+import org.openjdk.jmh.annotations.Benchmark;
+import org.openjdk.jmh.annotations.BenchmarkMode;
+import org.openjdk.jmh.annotations.Fork;
+import org.openjdk.jmh.annotations.Level;
+import org.openjdk.jmh.annotations.Measurement;
+import org.openjdk.jmh.annotations.Mode;
+import org.openjdk.jmh.annotations.OutputTimeUnit;
+import org.openjdk.jmh.annotations.Param;
+import org.openjdk.jmh.annotations.Scope;
+import org.openjdk.jmh.annotations.Setup;
+import org.openjdk.jmh.annotations.State;
+import org.openjdk.jmh.annotations.Warmup;
+
+import java.util.concurrent.TimeUnit;
+
+// TODO: The parameters are way too low. Use for debugging only!
+/*
+ * Benchmark parameters
+ */
+@Fork(0)
+@Warmup(iterations = 0)
+@Measurement(iterations = 1)
+@BenchmarkMode(Mode.AverageTime)
+@OutputTimeUnit(TimeUnit.MILLISECONDS)
+/*
+ * Benchmark state parameters
+ *
+ * Quote from JMH:
+ * State objects naturally encapsulate the state on which benchmark is working on.
+ */
+@State(Scope.Benchmark)
+public class MainJmh {
+ @Param()
+ private DataEnum dataEnum;
+ @Param()
+ private SortEnum sortEnum;
+
+ private ObjectSupplier data;
+ /* package-protected */ Object[] workingCopy;
+
+ // TODO: This is inaccurate. How to create and use separate arrays for each warmup x iteration x sortAlgorithm ?
+ @Setup(Level.Invocation)
+ public void setup() {
+ // A new MainJmh object is created for each @Param variation.
+ // Then, `data` is `null` again.
+ if (data == null) {
+ data = dataEnum.getObjectSupplier();
+ }
+ // For all warmup and measurement iterations of one @Param variation, the MainJmh object is reused.
+ // Thus, we can't just sort `data` directly.
+ // Instead, we have to create a copy of it on which the sort algorithm can work.
+ // This way, all iterations sort the same input.
+ workingCopy = data.getCopy();
+ }
+
+ @Benchmark
+ public void benchmark() {
+ sortEnum.getSortImpl().sort(workingCopy);
+ }
+}
diff --git a/app/src/main/java/de/uni_marburg/powersort/benchmark/Educational.java b/app/src/main/java/de/uni_marburg/powersort/Educational.java
similarity index 92%
rename from app/src/main/java/de/uni_marburg/powersort/benchmark/Educational.java
rename to app/src/main/java/de/uni_marburg/powersort/Educational.java
index 22c13b2..35bb456 100644
--- a/app/src/main/java/de/uni_marburg/powersort/benchmark/Educational.java
+++ b/app/src/main/java/de/uni_marburg/powersort/Educational.java
@@ -1,4 +1,7 @@
-package de.uni_marburg.powersort.benchmark;
+package de.uni_marburg.powersort;
+
+import de.uni_marburg.powersort.benchmark.DummyComparable1;
+import de.uni_marburg.powersort.benchmark.NaturalOrder;
import java.util.Arrays;
diff --git a/app/src/main/java/de/uni_marburg/powersort/FinnSort/FasterFinnSort.java b/app/src/main/java/de/uni_marburg/powersort/FinnSort/FasterFinnSort.java
new file mode 100644
index 0000000..37072ae
--- /dev/null
+++ b/app/src/main/java/de/uni_marburg/powersort/FinnSort/FasterFinnSort.java
@@ -0,0 +1,960 @@
+package de.uni_marburg.powersort.FinnSort;
+/*
+ * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
+ * Copyright 2009 Google Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+
+import java.util.Comparator;
+
+/**
+ * A stable, adaptive, iterative mergesort that requires far fewer than
+ * n lg(n) comparisons when running on partially sorted arrays, while
+ * offering performance comparable to a traditional mergesort when run
+ * on random arrays. Like all proper mergesorts, this sort is stable and
+ * runs O(n log n) time (worst case). In the worst case, this sort requires
+ * temporary storage space for n/2 object references; in the best case,
+ * it requires only a small constant amount of space.
+ *
+ * This implementation was adapted from Tim Peters's list sort for
+ * Python, which is described in detail here:
+ *
+ * http://svn.python.org/projects/python/trunk/Objects/listsort.txt
+ *
+ * Tim's C code may be found here:
+ *
+ * http://svn.python.org/projects/python/trunk/Objects/listobject.c
+ *
+ * The underlying techniques are described in this paper (and may have
+ * even earlier origins):
+ *
+ * "Optimistic Sorting and Information Theoretic Complexity"
+ * Peter McIlroy
+ * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
+ * pp 467-474, Austin, Texas, 25-27 January 1993.
+ *
+ * While the API to this class consists solely of static methods, it is
+ * (privately) instantiable; a TimSort instance holds the state of an ongoing
+ * sort, assuming the input array is large enough to warrant the full-blown
+ * TimSort. Small arrays are sorted in place, using a binary insertion sort.
+ *
+ * @author Josh Bloch
+ */
+class FasterFinnSort {
+ /**
+ * This is the minimum sized sequence that will be merged. Shorter
+ * sequences will be lengthened by calling binarySort. If the entire
+ * array is less than this length, no merges will be performed.
+ *
+ * This constant should be a power of two. It was 64 in Tim Peter's C
+ * implementation, but 32 was empirically determined to work better in
+ * this implementation. In the unlikely event that you set this constant
+ * to be a number that's not a power of two, you'll need to change the
+ * {@link #minRunLength} computation.
+ *
+ * If you decrease this constant, you must change the stackLen
+ * computation in the TimSort constructor, or you risk an
+ * ArrayOutOfBounds exception. See listsort.txt for a discussion
+ * of the minimum stack length required as a function of the length
+ * of the array being sorted and the minimum merge sequence length.
+ */
+ private static final int MIN_MERGE = 32;
+
+ /**
+ * The array being sorted.
+ */
+ private final T[] a;
+
+ /**
+ * The comparator for this sort.
+ */
+ private final Comparator super T> c;
+
+ /**
+ * When we get into galloping mode, we stay there until both runs win less
+ * often than MIN_GALLOP consecutive times.
+ */
+ private static final int MIN_GALLOP = 7;
+
+ /**
+ * This controls when we get *into* galloping mode. It is initialized
+ * to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
+ * random data, and lower for highly structured data.
+ */
+ private int minGallop = MIN_GALLOP;
+
+ /**
+ * Maximum initial size of tmp array, which is used for merging. The array
+ * can grow to accommodate demand.
+ *
+ * Unlike Tim's original C version, we do not allocate this much storage
+ * when sorting smaller arrays. This change was required for performance.
+ */
+ private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
+
+ /**
+ * Temp storage for merges. A workspace array may optionally be
+ * provided in constructor, and if so will be used as long as it
+ * is big enough.
+ */
+ private T[] tmp;
+ private int tmpBase; // base of tmp array slice
+ private int tmpLen; // length of tmp array slice
+
+ /**
+ * A stack of pending runs yet to be merged. Run i starts at
+ * address base[i] and extends for len[i] elements. It's always
+ * true (so long as the indices are in bounds) that:
+ *
+ * runBase[i] + runLen[i] == runBase[i + 1]
+ *
+ * so we could cut the storage for this, but it's a minor amount,
+ * and keeping all the info explicit simplifies the code.
+ */
+ private int stackSize = 0; // Number of pending runs on stack
+ private final int[] runBase;
+ private final int[] runLen;
+
+ /**
+ * Creates a TimSort instance to maintain the state of an ongoing sort.
+ *
+ * @param a the array to be sorted
+ * @param c the comparator to determine the order of the sort
+ * @param work a workspace array (slice)
+ * @param workBase origin of usable space in work array
+ * @param workLen usable size of work array
+ */
+ private FasterFinnSort(T[] a, Comparator super T> c, T[] work, int workBase, int workLen) {
+ this.a = a;
+ this.c = c;
+
+ // Allocate temp storage (which may be increased later if necessary)
+ int len = a.length;
+ int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
+ len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
+ if (work == null || workLen < tlen || workBase + tlen > work.length) {
+ @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
+ T[] newArray = (T[])java.lang.reflect.Array.newInstance
+ (a.getClass().getComponentType(), tlen);
+ tmp = newArray;
+ tmpBase = 0;
+ tmpLen = tlen;
+ }
+ else {
+ tmp = work;
+ tmpBase = workBase;
+ tmpLen = workLen;
+ }
+
+ /*
+ * Allocate runs-to-be-merged stack (which cannot be expanded). The
+ * stack length requirements are described in listsort.txt. The C
+ * version always uses the same stack length (85), but this was
+ * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
+ * 100 elements) in Java. Therefore, we use smaller (but sufficiently
+ * large) stack lengths for smaller arrays. The "magic numbers" in the
+ * computation below must be changed if MIN_MERGE is decreased. See
+ * the MIN_MERGE declaration above for more information.
+ * The maximum value of 49 allows for an array up to length
+ * Integer.MAX_VALUE-4, if array is filled by the worst case stack size
+ * increasing scenario. More explanations are given in section 4 of:
+ * http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
+ */
+ int stackLen = (len < 120 ? 5 :
+ len < 1542 ? 10 :
+ len < 119151 ? 24 : 49);
+ runBase = new int[stackLen];
+ runLen = new int[stackLen];
+ }
+
+ /*
+ * The next method (package private and static) constitutes the
+ * entire API of this class.
+ */
+
+ /**
+ * Sorts the given range, using the given workspace array slice
+ * for temp storage when possible. This method is designed to be
+ * invoked from public methods (in class Arrays) after performing
+ * any necessary array bounds checks and expanding parameters into
+ * the required forms.
+ *
+ * @param a the array to be sorted
+ * @param lo the index of the first element, inclusive, to be sorted
+ * @param hi the index of the last element, exclusive, to be sorted
+ * @param c the comparator to use
+ * @param work a workspace array (slice)
+ * @param workBase origin of usable space in work array
+ * @param workLen usable size of work array
+ * @since 1.8
+ */
+ static void sort(T[] a, int lo, int hi, Comparator super T> c,
+ T[] work, int workBase, int workLen) {
+ assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
+
+ int nRemaining = hi - lo;
+ if (nRemaining < 2)
+ return; // Arrays of size 0 and 1 are always sorted
+
+ // If array is small, do a "mini-TimSort" with no merges
+ if (nRemaining < MIN_MERGE) {
+ int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
+ binarySort(a, lo, hi, lo + initRunLen, c);
+ return;
+ }
+
+ /**
+ * March over the array once, left to right, finding natural runs,
+ * extending short natural runs to minRun elements, and merging runs
+ * to maintain stack invariant.
+ */
+ FasterFinnSort ts = new FasterFinnSort<>(a, c, work, workBase, workLen);
+ int minRun = minRunLength(nRemaining);
+ do {
+ // Identify next run
+ int runLen = countRunAndMakeAscending(a, lo, hi, c);
+
+ // If run is short, extend to min(minRun, nRemaining)
+ if (runLen < minRun) {
+ int force = nRemaining <= minRun ? nRemaining : minRun;
+ binarySort(a, lo, lo + force, lo + runLen, c);
+ runLen = force;
+ }
+
+ // Push run onto pending-run stack, and maybe merge
+ ts.pushRun(lo, runLen);
+ ts.mergeCollapse();
+
+ // Advance to find next run
+ lo += runLen;
+ nRemaining -= runLen;
+ } while (nRemaining != 0);
+
+ // Merge all remaining runs to complete sort
+ assert lo == hi;
+ ts.mergeForceCollapse();
+ assert ts.stackSize == 1;
+ }
+
+ /**
+ * Sorts the specified portion of the specified array using a binary
+ * insertion sort. This is the best method for sorting small numbers
+ * of elements. It requires O(n log n) compares, but O(n^2) data
+ * movement (worst case).
+ *
+ * If the initial part of the specified range is already sorted,
+ * this method can take advantage of it: the method assumes that the
+ * elements from index {@code lo}, inclusive, to {@code start},
+ * exclusive are already sorted.
+ *
+ * @param a the array in which a range is to be sorted
+ * @param lo the index of the first element in the range to be sorted
+ * @param hi the index after the last element in the range to be sorted
+ * @param start the index of the first element in the range that is
+ * not already known to be sorted ({@code lo <= start <= hi})
+ * @param c comparator to used for the sort
+ */
+ @SuppressWarnings("fallthrough")
+ private static void binarySort(T[] a, int lo, int hi, int start,
+ Comparator super T> c) {
+ assert lo <= start && start <= hi;
+ if (start == lo)
+ start++;
+ for ( ; start < hi; start++) {
+ T pivot = a[start];
+
+ // Set left (and right) to the index where a[start] (pivot) belongs
+ int left = lo;
+ int right = start;
+ assert left <= right;
+ /*
+ * Invariants:
+ * pivot >= all in [lo, left).
+ * pivot < all in [right, start).
+ */
+ while (left < right) {
+ int mid = (left + right) >>> 1;
+ if (c.compare(pivot, a[mid]) < 0)
+ right = mid;
+ else
+ left = mid + 1;
+ }
+ assert left == right;
+
+ /*
+ * The invariants still hold: pivot >= all in [lo, left) and
+ * pivot < all in [left, start), so pivot belongs at left. Note
+ * that if there are elements equal to pivot, left points to the
+ * first slot after them -- that's why this sort is stable.
+ * Slide elements over to make room for pivot.
+ */
+ int n = start - left; // The number of elements to move
+ // Switch is just an optimization for arraycopy in default case
+ switch (n) {
+ case 2: a[left + 2] = a[left + 1];
+ case 1: a[left + 1] = a[left];
+ break;
+ default: System.arraycopy(a, left, a, left + 1, n);
+ }
+ a[left] = pivot;
+ }
+ }
+
+ /**
+ * Returns the length of the run beginning at the specified position in
+ * the specified array and reverses the run if it is descending (ensuring
+ * that the run will always be ascending when the method returns).
+ *
+ * A run is the longest ascending sequence with:
+ *
+ * a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
+ *
+ * or the longest descending sequence with:
+ *
+ * a[lo] > a[lo + 1] > a[lo + 2] > ...
+ *
+ * For its intended use in a stable mergesort, the strictness of the
+ * definition of "descending" is needed so that the call can safely
+ * reverse a descending sequence without violating stability.
+ *
+ * @param a the array in which a run is to be counted and possibly reversed
+ * @param lo index of the first element in the run
+ * @param hi index after the last element that may be contained in the run.
+ * It is required that {@code lo < hi}.
+ * @param c the comparator to used for the sort
+ * @return the length of the run beginning at the specified position in
+ * the specified array
+ */
+ private static int countRunAndMakeAscending(T[] a, int lo, int hi,
+ Comparator super T> c) {
+ assert lo < hi;
+ int runHi = lo + 1;
+ if (runHi == hi)
+ return 1;
+
+ // Find end of run, and reverse range if descending
+ if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
+ while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
+ runHi++;
+ reverseRange(a, lo, runHi);
+ } else { // Ascending
+ while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
+ runHi++;
+ }
+
+ return runHi - lo;
+ }
+
+ /**
+ * Reverse the specified range of the specified array.
+ *
+ * @param a the array in which a range is to be reversed
+ * @param lo the index of the first element in the range to be reversed
+ * @param hi the index after the last element in the range to be reversed
+ */
+ private static void reverseRange(Object[] a, int lo, int hi) {
+ hi--;
+ while (lo < hi) {
+ Object t = a[lo];
+ a[lo++] = a[hi];
+ a[hi--] = t;
+ }
+ }
+
+ /**
+ * Returns the minimum acceptable run length for an array of the specified
+ * length. Natural runs shorter than this will be extended with
+ * {@link #binarySort}.
+ *
+ * Roughly speaking, the computation is:
+ *
+ * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
+ * Else if n is an exact power of 2, return MIN_MERGE/2.
+ * Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
+ * is close to, but strictly less than, an exact power of 2.
+ *
+ * For the rationale, see listsort.txt.
+ *
+ * @param n the length of the array to be sorted
+ * @return the length of the minimum run to be merged
+ */
+ private static int minRunLength(int n) {
+ assert n >= 0;
+ int r = 0; // Becomes 1 if any 1 bits are shifted off
+ while (n >= MIN_MERGE) {
+ r |= (n & 1);
+ n >>= 1;
+ }
+ return n + r;
+ }
+
+ /**
+ * Pushes the specified run onto the pending-run stack.
+ *
+ * @param runBase index of the first element in the run
+ * @param runLen the number of elements in the run
+ */
+ private void pushRun(int runBase, int runLen) {
+ this.runBase[stackSize] = runBase;
+ this.runLen[stackSize] = runLen;
+ stackSize++;
+ }
+
+ /**
+ * Examines the stack of runs waiting to be merged and merges adjacent runs
+ * until the stack invariants are reestablished:
+ *
+ * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
+ * 2. runLen[i - 2] > runLen[i - 1]
+ *
+ * This method is called each time a new run is pushed onto the stack,
+ * so the invariants are guaranteed to hold for i < stackSize upon
+ * entry to the method.
+ *
+ * Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
+ * Richard Bubel and Reiner Hahnle, this is fixed with respect to
+ * the analysis in "On the Worst-Case Complexity of TimSort" by
+ * Nicolas Auger, Vincent Jug, Cyril Nicaud, and Carine Pivoteau.
+ */
+ private void mergeCollapse() {
+ while (stackSize > 1) {
+ int n = stackSize - 2;
+ if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
+ n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
+ if (runLen[n - 1] < runLen[n + 1])
+ n--;
+ } else if (n < 0 || runLen[n] > runLen[n + 1]) {
+ break; // Invariant is established
+ }
+ mergeAt(n);
+ }
+ }
+ /*
+ Backup mergeCollapse() von TimSort:
+
+ private void mergeCollapse() {
+ while (stackSize > 1) {
+ int n = stackSize - 2;
+ if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
+ n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
+ if (runLen[n - 1] < runLen[n + 1])
+ n--;
+ } else if (n < 0 || runLen[n] > runLen[n + 1]) {
+ break; // Invariant is established
+ }
+ mergeAt(n);
+ }
+ }
+
+ */
+
+ /**
+ * Merges all runs on the stack until only one remains. This method is
+ * called once, to complete the sort.
+ */
+ private void mergeForceCollapse() {
+ while (stackSize > 1) {
+ int n = stackSize - 2;
+ if (n > 0 && runLen[n - 1] < runLen[n + 1])
+ n--;
+ mergeAt(n);
+ }
+ }
+
+ /**
+ * Merges the two runs at stack indices i and i+1. Run i must be
+ * the penultimate or antepenultimate run on the stack. In other words,
+ * i must be equal to stackSize-2 or stackSize-3.
+ *
+ * @param i stack index of the first of the two runs to merge
+ */
+ private void mergeAt(int i) {
+ assert stackSize >= 2;
+ assert i >= 0;
+ assert i == stackSize - 2 || i == stackSize - 3;
+
+ int base1 = runBase[i];
+ int len1 = runLen[i];
+ int base2 = runBase[i + 1];
+ int len2 = runLen[i + 1];
+ assert len1 > 0 && len2 > 0;
+ assert base1 + len1 == base2;
+
+ /*
+ * Record the length of the combined runs; if i is the 3rd-last
+ * run now, also slide over the last run (which isn't involved
+ * in this merge). The current run (i+1) goes away in any case.
+ */
+ runLen[i] = len1 + len2;
+ if (i == stackSize - 3) {
+ runBase[i + 1] = runBase[i + 2];
+ runLen[i + 1] = runLen[i + 2];
+ }
+ stackSize--;
+
+ /*
+ * Find where the first element of run2 goes in run1. Prior elements
+ * in run1 can be ignored (because they're already in place).
+ */
+ int k = gallopRight(a[base2], a, base1, len1, 0, c);
+ assert k >= 0;
+ base1 += k;
+ len1 -= k;
+ if (len1 == 0)
+ return;
+
+ /*
+ * Find where the last element of run1 goes in run2. Subsequent elements
+ * in run2 can be ignored (because they're already in place).
+ */
+ len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
+ assert len2 >= 0;
+ if (len2 == 0)
+ return;
+
+ // Merge remaining runs, using tmp array with min(len1, len2) elements
+ if (len1 <= len2)
+ mergeLo(base1, len1, base2, len2);
+ else
+ mergeHi(base1, len1, base2, len2);
+ }
+
+ /**
+ * Locates the position at which to insert the specified key into the
+ * specified sorted range; if the range contains an element equal to key,
+ * returns the index of the leftmost equal element.
+ *
+ * @param key the key whose insertion point to search for
+ * @param a the array in which to search
+ * @param base the index of the first element in the range
+ * @param len the length of the range; must be > 0
+ * @param hint the index at which to begin the search, 0 <= hint < n.
+ * The closer hint is to the result, the faster this method will run.
+ * @param c the comparator used to order the range, and to search
+ * @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
+ * pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
+ * In other words, key belongs at index b + k; or in other words,
+ * the first k elements of a should precede key, and the last n - k
+ * should follow it.
+ */
+ private static int gallopLeft(T key, T[] a, int base, int len, int hint,
+ Comparator super T> c) {
+ assert len > 0 && hint >= 0 && hint < len;
+ int lastOfs = 0;
+ int ofs = 1;
+ if (c.compare(key, a[base + hint]) > 0) {
+ // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
+ int maxOfs = len - hint;
+ while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
+ lastOfs = ofs;
+ ofs = (ofs << 1) + 1;
+ if (ofs <= 0) // int overflow
+ ofs = maxOfs;
+ }
+ if (ofs > maxOfs)
+ ofs = maxOfs;
+
+ // Make offsets relative to base
+ lastOfs += hint;
+ ofs += hint;
+ } else { // key <= a[base + hint]
+ // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
+ final int maxOfs = hint + 1;
+ while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
+ lastOfs = ofs;
+ ofs = (ofs << 1) + 1;
+ if (ofs <= 0) // int overflow
+ ofs = maxOfs;
+ }
+ if (ofs > maxOfs)
+ ofs = maxOfs;
+
+ // Make offsets relative to base
+ int tmp = lastOfs;
+ lastOfs = hint - ofs;
+ ofs = hint - tmp;
+ }
+ assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
+
+ /*
+ * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
+ * to the right of lastOfs but no farther right than ofs. Do a binary
+ * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
+ */
+ lastOfs++;
+ while (lastOfs < ofs) {
+ int m = lastOfs + ((ofs - lastOfs) >>> 1);
+
+ if (c.compare(key, a[base + m]) > 0)
+ lastOfs = m + 1; // a[base + m] < key
+ else
+ ofs = m; // key <= a[base + m]
+ }
+ assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
+ return ofs;
+ }
+
+ /**
+ * Like gallopLeft, except that if the range contains an element equal to
+ * key, gallopRight returns the index after the rightmost equal element.
+ *
+ * @param key the key whose insertion point to search for
+ * @param a the array in which to search
+ * @param base the index of the first element in the range
+ * @param len the length of the range; must be > 0
+ * @param hint the index at which to begin the search, 0 <= hint < n.
+ * The closer hint is to the result, the faster this method will run.
+ * @param c the comparator used to order the range, and to search
+ * @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
+ */
+ private static int gallopRight(T key, T[] a, int base, int len,
+ int hint, Comparator super T> c) {
+ assert len > 0 && hint >= 0 && hint < len;
+
+ int ofs = 1;
+ int lastOfs = 0;
+ if (c.compare(key, a[base + hint]) < 0) {
+ // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
+ int maxOfs = hint + 1;
+ while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
+ lastOfs = ofs;
+ ofs = (ofs << 1) + 1;
+ if (ofs <= 0) // int overflow
+ ofs = maxOfs;
+ }
+ if (ofs > maxOfs)
+ ofs = maxOfs;
+
+ // Make offsets relative to b
+ int tmp = lastOfs;
+ lastOfs = hint - ofs;
+ ofs = hint - tmp;
+ } else { // a[b + hint] <= key
+ // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
+ int maxOfs = len - hint;
+ while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
+ lastOfs = ofs;
+ ofs = (ofs << 1) + 1;
+ if (ofs <= 0) // int overflow
+ ofs = maxOfs;
+ }
+ if (ofs > maxOfs)
+ ofs = maxOfs;
+
+ // Make offsets relative to b
+ lastOfs += hint;
+ ofs += hint;
+ }
+ assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
+
+ /*
+ * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
+ * the right of lastOfs but no farther right than ofs. Do a binary
+ * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
+ */
+ lastOfs++;
+ while (lastOfs < ofs) {
+ int m = lastOfs + ((ofs - lastOfs) >>> 1);
+
+ if (c.compare(key, a[base + m]) < 0)
+ ofs = m; // key < a[b + m]
+ else
+ lastOfs = m + 1; // a[b + m] <= key
+ }
+ assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
+ return ofs;
+ }
+
+ /**
+ * Merges two adjacent runs in place, in a stable fashion. The first
+ * element of the first run must be greater than the first element of the
+ * second run (a[base1] > a[base2]), and the last element of the first run
+ * (a[base1 + len1-1]) must be greater than all elements of the second run.
+ *
+ * For performance, this method should be called only when len1 <= len2;
+ * its twin, mergeHi should be called if len1 >= len2. (Either method
+ * may be called if len1 == len2.)
+ *
+ * @param base1 index of first element in first run to be merged
+ * @param len1 length of first run to be merged (must be > 0)
+ * @param base2 index of first element in second run to be merged
+ * (must be aBase + aLen)
+ * @param len2 length of second run to be merged (must be > 0)
+ */
+ private void mergeLo(int base1, int len1, int base2, int len2) {
+ assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
+
+ // Copy first run into temp array
+ T[] a = this.a; // For performance
+ T[] tmp = ensureCapacity(len1);
+ int cursor1 = tmpBase; // Indexes into tmp array
+ int cursor2 = base2; // Indexes int a
+ int dest = base1; // Indexes int a
+ System.arraycopy(a, base1, tmp, cursor1, len1);
+
+ // Move first element of second run and deal with degenerate cases
+ a[dest++] = a[cursor2++];
+ if (--len2 == 0) {
+ System.arraycopy(tmp, cursor1, a, dest, len1);
+ return;
+ }
+ if (len1 == 1) {
+ System.arraycopy(a, cursor2, a, dest, len2);
+ a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
+ return;
+ }
+
+ Comparator super T> c = this.c; // Use local variable for performance
+ int minGallop = this.minGallop; // " " " " "
+ outer:
+ while (true) {
+ int count1 = 0; // Number of times in a row that first run won
+ int count2 = 0; // Number of times in a row that second run won
+
+ /*
+ * Do the straightforward thing until (if ever) one run starts
+ * winning consistently.
+ */
+ do {
+ assert len1 > 1 && len2 > 0;
+ if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
+ a[dest++] = a[cursor2++];
+ count2++;
+ count1 = 0;
+ if (--len2 == 0)
+ break outer;
+ } else {
+ a[dest++] = tmp[cursor1++];
+ count1++;
+ count2 = 0;
+ if (--len1 == 1)
+ break outer;
+ }
+ } while ((count1 | count2) < minGallop);
+
+ /*
+ * One run is winning so consistently that galloping may be a
+ * huge win. So try that, and continue galloping until (if ever)
+ * neither run appears to be winning consistently anymore.
+ */
+ do {
+ assert len1 > 1 && len2 > 0;
+ count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
+ if (count1 != 0) {
+ System.arraycopy(tmp, cursor1, a, dest, count1);
+ dest += count1;
+ cursor1 += count1;
+ len1 -= count1;
+ if (len1 <= 1) // len1 == 1 || len1 == 0
+ break outer;
+ }
+ a[dest++] = a[cursor2++];
+ if (--len2 == 0)
+ break outer;
+
+ count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
+ if (count2 != 0) {
+ System.arraycopy(a, cursor2, a, dest, count2);
+ dest += count2;
+ cursor2 += count2;
+ len2 -= count2;
+ if (len2 == 0)
+ break outer;
+ }
+ a[dest++] = tmp[cursor1++];
+ if (--len1 == 1)
+ break outer;
+ minGallop--;
+ } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
+ if (minGallop < 0)
+ minGallop = 0;
+ minGallop += 2; // Penalize for leaving gallop mode
+ } // End of "outer" loop
+ this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
+
+ if (len1 == 1) {
+ assert len2 > 0;
+ System.arraycopy(a, cursor2, a, dest, len2);
+ a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
+ } else if (len1 == 0) {
+ throw new IllegalArgumentException(
+ "Comparison method violates its general contract!");
+ } else {
+ assert len2 == 0;
+ assert len1 > 1;
+ System.arraycopy(tmp, cursor1, a, dest, len1);
+ }
+ }
+
+ /**
+ * Like mergeLo, except that this method should be called only if
+ * len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
+ * may be called if len1 == len2.)
+ *
+ * @param base1 index of first element in first run to be merged
+ * @param len1 length of first run to be merged (must be > 0)
+ * @param base2 index of first element in second run to be merged
+ * (must be aBase + aLen)
+ * @param len2 length of second run to be merged (must be > 0)
+ */
+ private void mergeHi(int base1, int len1, int base2, int len2) {
+ assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
+
+ // Copy second run into temp array
+ T[] a = this.a; // For performance
+ T[] tmp = ensureCapacity(len2);
+ int tmpBase = this.tmpBase;
+ System.arraycopy(a, base2, tmp, tmpBase, len2);
+
+ int cursor1 = base1 + len1 - 1; // Indexes into a
+ int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
+ int dest = base2 + len2 - 1; // Indexes into a
+
+ // Move last element of first run and deal with degenerate cases
+ a[dest--] = a[cursor1--];
+ if (--len1 == 0) {
+ System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
+ return;
+ }
+ if (len2 == 1) {
+ dest -= len1;
+ cursor1 -= len1;
+ System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
+ a[dest] = tmp[cursor2];
+ return;
+ }
+
+ Comparator super T> c = this.c; // Use local variable for performance
+ int minGallop = this.minGallop; // " " " " "
+ outer:
+ while (true) {
+ int count1 = 0; // Number of times in a row that first run won
+ int count2 = 0; // Number of times in a row that second run won
+
+ /*
+ * Do the straightforward thing until (if ever) one run
+ * appears to win consistently.
+ */
+ do {
+ assert len1 > 0 && len2 > 1;
+ if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
+ a[dest--] = a[cursor1--];
+ count1++;
+ count2 = 0;
+ if (--len1 == 0)
+ break outer;
+ } else {
+ a[dest--] = tmp[cursor2--];
+ count2++;
+ count1 = 0;
+ if (--len2 == 1)
+ break outer;
+ }
+ } while ((count1 | count2) < minGallop);
+
+ /*
+ * One run is winning so consistently that galloping may be a
+ * huge win. So try that, and continue galloping until (if ever)
+ * neither run appears to be winning consistently anymore.
+ */
+ do {
+ assert len1 > 0 && len2 > 1;
+ count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
+ if (count1 != 0) {
+ dest -= count1;
+ cursor1 -= count1;
+ len1 -= count1;
+ System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
+ if (len1 == 0)
+ break outer;
+ }
+ a[dest--] = tmp[cursor2--];
+ if (--len2 == 1)
+ break outer;
+
+ count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
+ if (count2 != 0) {
+ dest -= count2;
+ cursor2 -= count2;
+ len2 -= count2;
+ System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
+ if (len2 <= 1) // len2 == 1 || len2 == 0
+ break outer;
+ }
+ a[dest--] = a[cursor1--];
+ if (--len1 == 0)
+ break outer;
+ minGallop--;
+ } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
+ if (minGallop < 0)
+ minGallop = 0;
+ minGallop += 2; // Penalize for leaving gallop mode
+ } // End of "outer" loop
+ this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
+
+ if (len2 == 1) {
+ assert len1 > 0;
+ dest -= len1;
+ cursor1 -= len1;
+ System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
+ a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
+ } else if (len2 == 0) {
+ throw new IllegalArgumentException(
+ "Comparison method violates its general contract!");
+ } else {
+ assert len1 == 0;
+ assert len2 > 0;
+ System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
+ }
+ }
+
+ /**
+ * Ensures that the external array tmp has at least the specified
+ * number of elements, increasing its size if necessary. The size
+ * increases exponentially to ensure amortized linear time complexity.
+ *
+ * @param minCapacity the minimum required capacity of the tmp array
+ * @return tmp, whether or not it grew
+ */
+ private T[] ensureCapacity(int minCapacity) {
+ if (tmpLen < minCapacity) {
+ // Compute smallest power of 2 > minCapacity
+ int newSize = -1 >>> Integer.numberOfLeadingZeros(minCapacity);
+ newSize++;
+
+ if (newSize < 0) // Not bloody likely!
+ newSize = minCapacity;
+ else
+ newSize = Math.min(newSize, a.length >>> 1);
+
+ @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
+ T[] newArray = (T[])java.lang.reflect.Array.newInstance
+ (a.getClass().getComponentType(), newSize);
+ tmp = newArray;
+ tmpLen = newSize;
+ tmpBase = 0;
+ }
+ return tmp;
+ }
+}
diff --git a/app/src/main/java/de/uni_marburg/powersort/FinnSort/FinnSort.java b/app/src/main/java/de/uni_marburg/powersort/FinnSort/FinnSort.java
index ac9a591..341603f 100644
--- a/app/src/main/java/de/uni_marburg/powersort/FinnSort/FinnSort.java
+++ b/app/src/main/java/de/uni_marburg/powersort/FinnSort/FinnSort.java
@@ -5,60 +5,70 @@ import static java.lang.Math.*;
public class FinnSort {
- private static final ArrayList runs = new ArrayList<>();
+ private static ArrayList runs;
- static void sort(Integer[] a) {
+ public static void sort(T[] a, Comparator super T> c) {
+
+ runs = new ArrayList<>();
int n = a.length;
int i = 0;
- int j = extendRunRight(a, i);
+ int j = extendRunRight(a, i, c);
- printList(a);
+ printList(a, c);
runs.add(new Run(i, j, 0));
i = j;
while (i < n) {
- j = extendRunRight(a, i);
+ j = extendRunRight(a, i, c);
//printRuns();
int p = power(runs.getLast(), new Run(i, j, 0), n);
while (runs.size() >= 2 && p < power(runs.getLast(), runs.get(runs.size() - 2), n)) {
- basicMerge(a, runs.removeFirst(), runs.removeFirst());
+ basicMerge(a, runs.removeLast(), runs.removeLast(), c);
}
runs.add(new Run(i, j, p));
i = j;
}
while (runs.size() >= 2) {
- basicMerge(a, runs.removeLast(), runs.removeLast());
+ basicMerge(a, runs.removeLast(), runs.removeLast(), c);
}
}
- private static void basicMerge(Integer[] a, Run r1, Run r2) {
- ArrayList run1 = new ArrayList<>(Arrays.asList(a).subList(r1.start, r1.end));
- ArrayList run2 = new ArrayList<>(Arrays.asList(a).subList(r2.start, r2.end));
- ArrayList merge = new ArrayList<>();
+ private static void basicMerge(T[] a, Run r1, Run r2, Comparator super T> c) {
+ ArrayList run1 = new ArrayList<>(Arrays.asList(a).subList(r1.start, r1.end));
+ ArrayList run2 = new ArrayList<>(Arrays.asList(a).subList(r2.start, r2.end));
+ ArrayList merge = new ArrayList<>();
- while (!run1.isEmpty() || !run2.isEmpty()) {
- if (run2.isEmpty() || !run1.isEmpty() && run1.getFirst() < run2.getFirst()) {
+ while (!run1.isEmpty() && !run2.isEmpty()) {
+ if (c.compare(run1.getFirst(), run2.getFirst()) < 0) {
merge.add(run1.removeFirst());
} else {
merge.add(run2.removeFirst());
}
}
+ while (!run1.isEmpty()) {
+ merge.add(run1.removeFirst());
+ }
+
+ while (!run2.isEmpty()) {
+ merge.add(run2.removeFirst());
+ }
+
System.arraycopy(merge.toArray(), 0, a, min(r1.start, r2.start), merge.size());
Run r = new Run(min(r1.start, r2.start), max(r1.end, r2.end), min(r1.power, r2.power));
runs.add(r);
- printList(a);
+ printList(a, c);
}
- private static int extendRunRight(Integer[] a, int i) {
+ private static int extendRunRight(T[] a, int i, Comparator super T> c) {
int j = i + 1;
- while (j < a.length && a[j-1] <= a[j]) {
+ while (j < a.length && c.compare(a[j-1], a[j]) <= 0) {
j++;
}
return j;
@@ -87,12 +97,12 @@ public class FinnSort {
}
System.out.println(s);
}
- public static void printList(Integer[] arr) {
+ public static void printList(T[] arr, Comparator super T> c) {
String s = "";
int i = 0;
while (i < arr.length) {
String run = "[";
- int j = extendRunRight(arr, i);
+ int j = extendRunRight(arr, i, c);
for (int t = i; t < j; t++) {
run += arr[t] + ", ";
}
@@ -101,13 +111,4 @@ public class FinnSort {
}
System.out.println(s);
}
-
- public static void main(String[] args) {
- Integer[] numbers = new Integer[]{24, 25, 26, 27, 28, 21, 22, 23, 18, 19, 20, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 1, 2};
-
-
- sort(numbers);
- System.out.println("Result: ");
- System.out.println(new ArrayList<>(List.of(numbers)));
- }
}
\ No newline at end of file
diff --git a/app/src/main/java/de/uni_marburg/powersort/benchmark/DummyComparable1.java b/app/src/main/java/de/uni_marburg/powersort/benchmark/DummyComparable1.java
index 7cea94b..a404bbe 100644
--- a/app/src/main/java/de/uni_marburg/powersort/benchmark/DummyComparable1.java
+++ b/app/src/main/java/de/uni_marburg/powersort/benchmark/DummyComparable1.java
@@ -3,7 +3,7 @@ package de.uni_marburg.powersort.benchmark;
/**
* A class for tiny, comparable objects.
*/
-record DummyComparable1(int id) implements Comparable {
+public record DummyComparable1(int id) implements Comparable {
@Override
public int compareTo(DummyComparable1 other) {
return id - other.id;
diff --git a/app/src/main/java/de/uni_marburg/powersort/benchmark/IntegerArray.java b/app/src/main/java/de/uni_marburg/powersort/benchmark/IntegerArray.java
index 911edc1..4f22483 100644
--- a/app/src/main/java/de/uni_marburg/powersort/benchmark/IntegerArray.java
+++ b/app/src/main/java/de/uni_marburg/powersort/benchmark/IntegerArray.java
@@ -4,32 +4,44 @@ public class IntegerArray {
private IntegerArray() {
}
- public static Integer[] random(final int length) {
- return random(length, Integer.MIN_VALUE, Integer.MAX_VALUE);
- }
-
- public static Integer[] random(final int length, final int minInt, final int maxInt) {
+ public static Integer[] random(final int length, final long seed) {
final Integer[] list = new Integer[length];
for (int i = 0; i < length; i++) {
- list[i] = RandomInt.integer(minInt, maxInt);
+ list[i] = RandomInt.integer(seed);
}
return list;
}
/**
- * @return [start, start-1, ..., end+1, end]
+ * @return [high, high-1, ..., low+1, low]
*/
- public static Integer[] descending(final int start, final int end) {
- assert start > end;
+ public static Integer[] descending(final int high, final int low) {
+ assert high >= low;
- Integer[] list = new Integer[start - end + 1];
+ Integer[] list = new Integer[high - low + 1];
for (int i = 0; i < list.length; i++) {
- int value = start - i;
+ int value = high - i;
list[i] = value;
}
- assert list[0] == start;
- assert list[list.length - 1] == end;
+ assert list[0] == high;
+ assert list[list.length - 1] == low;
+ return list;
+ }
+ /**
+ * @return [low, low-1, ..., high+1, high]
+ */
+ public static Integer[] ascending(final int low, final int high) {
+ assert low <= high;
+
+ Integer[] list = new Integer[high - low + 1];
+ for (int i = 0; i < list.length; i++) {
+ int value = low + i;
+ list[i] = value;
+ }
+
+ assert list[0] == low;
+ assert list[list.length - 1] == high;
return list;
}
}
diff --git a/app/src/main/java/de/uni_marburg/powersort/benchmark/Main.java b/app/src/main/java/de/uni_marburg/powersort/benchmark/Main.java
index b4a5c48..917446f 100644
--- a/app/src/main/java/de/uni_marburg/powersort/benchmark/Main.java
+++ b/app/src/main/java/de/uni_marburg/powersort/benchmark/Main.java
@@ -1,80 +1,50 @@
package de.uni_marburg.powersort.benchmark;
-import de.uni_marburg.powersort.sort.DummySort;
-import de.uni_marburg.powersort.sort.MergeSort;
-import de.uni_marburg.powersort.sort.TimSort;
-import de.uni_marburg.powersort.data.DescendingIntegers;
-import de.uni_marburg.powersort.data.RandomIntegers;
+import de.uni_marburg.powersort.data.DataEnum;
+import de.uni_marburg.powersort.sort.SortEnum;
import de.uni_marburg.powersort.data.ObjectSupplier;
-import java.util.Arrays;
-import java.util.List;
+import java.util.EnumSet;
import java.util.concurrent.TimeUnit;
-import java.util.function.Supplier;
/**
* Custom benchmark.
*/
public class Main {
public static void main(final String[] args) {
- final SortImpl[] sortImplementations = getSortImplementations();
- final List> sortInputSuppliers = getSortInputSuppliers();
+ final EnumSet sortImplementations = getSortImplementations();
+ final EnumSet dataEnums = getSortInputSuppliers();
- for (Supplier sortInputSupplier : sortInputSuppliers) {
- ObjectSupplier objectSupplier = sortInputSupplier.get();
- System.out.println("\n" + objectSupplier.title());
+ for (DataEnum dataEnum : dataEnums) {
+ ObjectSupplier objectSupplier = dataEnum.getObjectSupplier();
+ System.out.println(dataEnum);
- for (SortImpl sortImplementation : sortImplementations) {
- Object[] sortInput = objectSupplier.get();
+ for (SortEnum sortImplementation : sortImplementations) {
+ Object[] sortInput = objectSupplier.getCopy();
+ // TODO: JVM warmup!
final long startNanos = System.nanoTime();
- sortImplementation.sort(sortInput);
+ sortImplementation.getSortImpl().sort(sortInput);
final long stopNanos = System.nanoTime();
final long durNanos = stopNanos - startNanos;
final long durMillis = TimeUnit.NANOSECONDS.toMillis(durNanos);
final String durFormatted = LongFormatter.formatUnderscore(durMillis);
- System.out.println(durFormatted + "," + sortImplementation.title);
+ System.out.println(durFormatted + "," + sortImplementation);
}
}
}
- static SortImpl[] getSortImplementations() {
- return new SortImpl[]{
- new SortImpl("DummySort") {
- @Override
- public void sort(Object[] a) {
- DummySort.sort(a, 0, a.length, NaturalOrder.INSTANCE, null, 0, 0);
- }
- },
- new SortImpl("TimSort") {
- @Override
- public void sort(Object[] a) {
- TimSort.sort(a, 0, a.length, NaturalOrder.INSTANCE, null, 0, 0);
- }
- },
- new SortImpl("MergeSort") {
- @Override
- public void sort(Object[] a) {
- MergeSort.legacyMergeSort(a, NaturalOrder.INSTANCE);
- }
- }
- };
+ static EnumSet getSortImplementations() {
+ return EnumSet.allOf(SortEnum.class);
}
/**
- * The returned ObjectSupplier objects are wrapped by Supplier objects.
- * This way they are lazily created on their first access.
+ * The returned ObjectSupplier objects are wrapped by DataEnum objects.
+ * This way they are lazily created on their first access with DataEnum.get().
* This saves memory if we work with large lists.
*/
- static List> getSortInputSuppliers() {
- return Arrays.asList(
- // Three different random lists.
- RandomIntegers::new,
- RandomIntegers::new,
- RandomIntegers::new,
- // One descending list.
- DescendingIntegers::new
- );
+ static EnumSet getSortInputSuppliers() {
+ return EnumSet.allOf(DataEnum.class);
}
}
diff --git a/app/src/main/java/de/uni_marburg/powersort/benchmark/NaturalOrder.java b/app/src/main/java/de/uni_marburg/powersort/benchmark/NaturalOrder.java
index e60074c..9fc8da8 100644
--- a/app/src/main/java/de/uni_marburg/powersort/benchmark/NaturalOrder.java
+++ b/app/src/main/java/de/uni_marburg/powersort/benchmark/NaturalOrder.java
@@ -5,11 +5,11 @@ import java.util.Comparator;
/**
* Copied from JDK23 Arrays.java
*/
-final class NaturalOrder implements Comparator