Kovarianz Beispiel ausfuehrlich

This commit is contained in:
Christian Bay 2015-10-02 19:02:42 +02:00
parent da032c03c1
commit 40390f1d9b

View File

@ -125,6 +125,57 @@ Standartwerte f\"ur Konfidenz:
\mu \in [\bar{x} - z_{1-\frac{\alpha}{2}} * \frac{\sigma}{\sqrt{n}}]
\end{align}
\subsection{Kovarianz}
Sind zwei Zufallsvariablen $X_1$, $X_2$ stochastisch unabh\"angig dann
gilt:
\begin{align}
cov(X_1,X_2) = 0
\end{align}
Ansonsten:
\begin{align}
cov(X_1,X_2) = E(X_1X_2) - E(X_1)E(X_2)
\end{align}
\textbf{Erwartungswert}:
\begin{align}
EX = \sum_{k \in \Omega} k * P(X = k) = \int_{-\infty}^{\infty} x * f(x) dx
\end{align}
\textbf{Beispiel}:
Berechnen der Kovarianz der Zufallsvariablen $Z_1 = X_1 - X_2$ und $Z_2 = X_1$,
wenn der Zufallsvektor $(X_1,X_2)$ auf der Menge
\begin{align}
M = \{(x_1,x_2)| 0 \leq x_2 \leq 2 \text{ und } 0 \leq x_1 \leq x_2\}
\end{align}
\textbf{Gesucht}: $cov(Z_1, Z_2)$
\begin{enumerate}
\item Kovavarianz umformen
\begin{align}
cov(Z_1, Z_2) = cov(X_1-X_2, X_1) = (E(X^2_1)-E(X_1)^2)-(E(X_2X_1)-E(X_2)E(X_1))
\end{align}
\item Die \textbf{Fl\"ache} $A_M$ unter Funktion berechnen: $A_M = 2$.\\
\item Die \textbf{Dichtefunktion} ist der Kehrwert von $A_M$ und damit $\frac{1}{2}$.
\begin{align}
f(x_1,x_2) =
\begin{cases}
\frac{1}{2} & x_1,x_2 \in M \\
0 & sonst
\end{cases}
\end{align}
\item Jetzt wieder mittels \textbf{Marginalsdichte} $f(x_1)$ und $f(x_2)$ bestimmen.
\begin{align}
f_1(x_1) = \int_{x_1}^2 f(x_1,x_2) dx_2\\
f_2(x_2) = \int_{0}^{x_2} f(x_1,x_2) dx_1
\end{align}
\item Berechnung der ben\"otigten Erwartungswerte $E$:
\begin{align}
E(X_i) = \int_{0}^{2} x_i * f_i(x_i) dx\\
E(X_i^2) = \int_{0}^{2} x_i^2 * f_i(x_i) dx\\
E(X_1X_2) = \underbrace{\int_0^{2}\int_{0}^{x_2}}_{\text{Integration \"uber $x_1$ und
$x_2$}} x_1*x_2*f(x_1,x_2) dx_1 dx_2
\end{align}
\item Einsetzen in umgeformte Kovarianzformel (siehe 1)
\end{enumerate}
\section{Mengen}
\subsection{o-Algebra}
- leere Menge enthalten\\