* eslint-plugin-svelte3 -> eslint-plugin-svelte
The former is deprecated, and blocks an update to Svelte 4.
Also drop unused svelte2tsx and types package.
* Drop unused symbols code for now
It may be added back in the future, but for now dropping it will save
200k from our editor bundle.
* Remove sass and caniuse-lite pins
The latter no longer seems to be required. The former was added to
suppress deprecation warnings when compiling the old bootstrap version
we have pinned. Those are hidden by the build tool now (though we really
need to address them at one point: https://github.com/ankitects/anki/issues/1385)
Also removed unused files section.
* Prevent proto compile from looking in node_modules/@types/sass
When deps are updated, tsc aborts because @types/sass is a dummy package
without an index.d.ts file.
* Filter Svelte warnings out of ./run
* Update to latest Bootstrap
This fixes the deprecation warnings we were getting during build:
bootstrap doesn't accept runtime CSS variables being set in Sass, as
it wants to apply transforms to the colors.
Closes#1385
* Start port to Svelte 4
- svelte-check tests have a bunch of failures; ./run works
- Svelte no longer exposes internals, so we can't use create_in_transition
- Also update esbuild and related components like esbuild-svelte
* Fix test failures
Had to add some more a11y warning ignores - have added
https://github.com/ankitects/anki/issues/2564 to address that in the
future.
* Remove some dependency pins
+ Remove sass, we don't need it directly
* Bump remaining JS deps that have a current semver
* Upgrade dprint/license-checker/marked
The new helper method avoids marked printing deprecation warnings to
the console.
Also remove unused lodash/long types, and move lodahs-es to devdeps
* Upgrade eslint and fluent packages
* Update @floating-ui/dom
The only dependencies remaining are currently blocked:
- Jest 29 gives some error about require vs import; may not be worth
investigating if we switch to Deno for the tests
- CodeMirror 6 is a big API change and will need work.
* Roll dprint back to an earlier version
GitHub dropped support for Ubuntu 18 runners, causing dprint's artifacts
to require a glibc version greater than what Anki CI currently has.
* Fix .no-reduce-motion missing from graphs spinner, and not being honored
* Begin migration from protobuf.js -> protobuf-es
Motivation:
- Protobuf-es has a nicer API: messages are represented as classes, and
fields which should exist are not marked as nullable.
- As it uses modules, only the proto messages we actually use get included
in our bundle output. Protobuf.js put everything in a namespace, which
prevented tree-shaking, and made it awkward to access inner messages.
- ./run after touching a proto file drops from about 8s to 6s on my machine. The tradeoff
is slower decoding/encoding (#2043), but that was mainly a concern for the
graphs page, and was unblocked by
37151213cd
Approach/notes:
- We generate the new protobuf-es interface in addition to existing
protobuf.js interface, so we can migrate a module at a time, starting
with the graphs module.
- rslib:proto now generates RPC methods for TS in addition to the Python
interface. The input-arg-unrolling behaviour of the Python generation is
not required here, as we declare the input arg as a PlainMessage<T>, which
marks it as requiring all fields to be provided.
- i64 is represented as bigint in protobuf-es. We were using a patch to
protobuf.js to get it to output Javascript numbers instead of long.js
types, but now that our supported browser versions support bigint, it's
probably worth biting the bullet and migrating to bigint use. Our IDs
fit comfortably within MAX_SAFE_INTEGER, but that may not hold for future
fields we add.
- Oneofs are handled differently in protobuf-es, and are going to need
some refactoring.
Other notable changes:
- Added a --mkdir arg to our build runner, so we can create a dir easily
during the build on Windows.
- Simplified the preference handling code, by wrapping the preferences
in an outer store, instead of a separate store for each individual
preference. This means a change to one preference will trigger a redraw
of all components that depend on the preference store, but the redrawing
is cheap after moving the data processing to Rust, and it makes the code
easier to follow.
- Drop async(Reactive).ts in favour of more explicit handling with await
blocks/updating.
- Renamed add_inputs_to_group() -> add_dependency(), and fixed it not adding
dependencies to parent groups. Renamed add() -> add_action() for clarity.
* Remove a couple of unused proto imports
* Migrate card info
* Migrate congrats, image occlusion, and tag editor
+ Fix imports for multi-word proto files.
* Migrate change-notetype
* Migrate deck options
* Bump target to es2020; simplify ts lib list
Have used caniuse.com to confirm Chromium 77, iOS 14.5 and the Chrome
on Android support the full es2017-es2020 features.
* Migrate import-csv
* Migrate i18n and fix missing output types in .js
* Migrate custom scheduling, and remove protobuf.js
To mostly maintain our old API contract, we make use of protobuf-es's
ability to convert to JSON, which follows the same format as protobuf.js
did. It doesn't cover all case: users who were previously changing the
variant of a type will need to update their code, as assigning to a new
variant no longer automatically removes the old one, which will cause an
error when we try to convert back from JSON. But I suspect the large majority
of users are adjusting the current variant rather than creating a new one,
and this saves us having to write proxy wrappers, so it seems like a
reasonable compromise.
One other change I made at the same time was to rename value->kind for
the oneofs in our custom study protos, as 'value' was easily confused
with the 'case/value' output that protobuf-es has.
With protobuf.js codegen removed, touching a proto file and invoking
./run drops from about 8s to 6s.
This closes#2043.
* Allow tree-shaking on protobuf types
* Display backend error messages in our ts alert()
* Make sourcemap generation opt-in for ts-run
Considerably slows down build, and not used most of the time.
- page-break avoidance needs to be moved to the wrapping TitledContainer
- grid has to be disabled, as it prevents page breaks from working, and
shows too many columns (https://forums.ankiweb.net/t/stats-save-as-pdf-problems-2-1-55/25773)
- content underflowed the top header
(for upgrading users, please see the notes at the bottom)
Bazel brought a lot of nice things to the table, such as rebuilds based on
content changes instead of modification times, caching of build products,
detection of incorrect build rules via a sandbox, and so on. Rewriting the build
in Bazel was also an opportunity to improve on the Makefile-based build we had
prior, which was pretty poor: most dependencies were external or not pinned, and
the build graph was poorly defined and mostly serialized. It was not uncommon
for fresh checkouts to fail due to floating dependencies, or for things to break
when trying to switch to an older commit.
For day-to-day development, I think Bazel served us reasonably well - we could
generally switch between branches while being confident that builds would be
correct and reasonably fast, and not require full rebuilds (except on Windows,
where the lack of a sandbox and the TS rules would cause build breakages when TS
files were renamed/removed).
Bazel achieves that reliability by defining rules for each programming language
that define how source files should be turned into outputs. For the rules to
work with Bazel's sandboxing approach, they often have to reimplement or
partially bypass the standard tools that each programming language provides. The
Rust rules call Rust's compiler directly for example, instead of using Cargo,
and the Python rules extract each PyPi package into a separate folder that gets
added to sys.path.
These separate language rules allow proper declaration of inputs and outputs,
and offer some advantages such as caching of build products and fine-grained
dependency installation. But they also bring some downsides:
- The rules don't always support use-cases/platforms that the standard language
tools do, meaning they need to be patched to be used. I've had to contribute a
number of patches to the Rust, Python and JS rules to unblock various issues.
- The dependencies we use with each language sometimes make assumptions that do
not hold in Bazel, meaning they either need to be pinned or patched, or the
language rules need to be adjusted to accommodate them.
I was hopeful that after the initial setup work, things would be relatively
smooth-sailing. Unfortunately, that has not proved to be the case. Things
frequently broke when dependencies or the language rules were updated, and I
began to get frustrated at the amount of Anki development time I was instead
spending on build system upkeep. It's now about 2 years since switching to
Bazel, and I think it's time to cut losses, and switch to something else that's
a better fit.
The new build system is based on a small build tool called Ninja, and some
custom Rust code in build/. This means that to build Anki, Bazel is no longer
required, but Ninja and Rust need to be installed on your system. Python and
Node toolchains are automatically downloaded like in Bazel.
This new build system should result in faster builds in some cases:
- Because we're using cargo to build now, Rust builds are able to take advantage
of pipelining and incremental debug builds, which we didn't have with Bazel.
It's also easier to override the default linker on Linux/macOS, which can
further improve speeds.
- External Rust crates are now built with opt=1, which improves performance
of debug builds.
- Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript
compiler. This results in faster builds, by deferring typechecking to test/check
time, and by allowing more work to happen in parallel.
As an example of the differences, when testing with the mold linker on Linux,
adding a new message to tags.proto (which triggers a recompile of the bulk of
the Rust and TypeScript code) results in a compile that goes from about 22s on
Bazel to about 7s in the new system. With the standard linker, it's about 9s.
Some other changes of note:
- Our Rust workspace now uses cargo-hakari to ensure all packages agree on
available features, preventing unnecessary rebuilds.
- pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge
source files and generated files into a single folder for running. By telling
VSCode about the extra search path, code completion now works with generated
files without needing to symlink them into the source folder.
- qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py.
Instead, the generated files are now placed in a separate _aqt package that's
added to the path.
- ts/lib is now exposed as @tslib, so the source code and generated code can be
provided under the same namespace without a merging step.
- MyPy and PyLint are now invoked once for the entire codebase.
- dprint will be used to format TypeScript/json files in the future instead of
the slower prettier (currently turned off to avoid causing conflicts). It can
automatically defer to prettier when formatting Svelte files.
- svelte-check is now used for typechecking our Svelte code, which revealed a
few typing issues that went undetected with the old system.
- The Jest unit tests now work on Windows as well.
If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes:
- please remove node_modules and .bazel
- install rustup (https://rustup.rs/)
- install rsync if not already installed (on windows, use pacman - see docs/windows.md)
- install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and
place on your path, or from your distro/homebrew if it's 1.10+)
- update .vscode/settings.json from .vscode.dist
* Include base styles in graphs-base.scss
This includes the custom scrollbar styles, which were missing on the stats page.
* Set responsive grid layout on GraphsPage, use TitledContainer component
+ use global button style, tweak input appearance and other small changes
* Improve margins on GraphsPage
* Make eslint sort our imports
* fix missing deps in eslint rule (dae)
Caught on Linux due to the stricter sandboxing
* Remove exports-last eslint rule (for now?)
* Adjust browserslist settings
- We use ResizeObserver which is not supported in browsers like KaiOS,
Baidu or Android UC
* Raise minimum iOS version 13.4
- It's the first version that supports ResizeObserver
* Apply new eslint rules to sort imports
* Move some AddCards specific code to NoteCreator.svelte
* Add new strings for Toggling the Visual / HTML editor
* Set LabelContainer vertical-align to text-top
- Makes them look more centered
* Remove appendInParentheses helper
* Make all ts/*.html files include only module.js and module.css
* Move any JS from .html to index files
* Remove .html files from ts modules
* Remove Python with Starlark implemenation
* Remove reference to non-existing file
* Remove deck-option.html as well
* fix change-notetype screen (dae)
* Allow theme change at runtime and add hook
* Save or restore default palette on theme change
* Update aqt widget styles on theme change
* styling fixes
- drop _light_palette, as default_palette serves the same purpose
- save default platform theme, and restore it when switching away
from nightmode
- update macOS light/dark mode on theme switch
- fix unreadable menus on Windows
* update night-mode classes on theme change
This is the easy part - CSS styling that uses standard_css or our
css variables should update automatically. The main remaining issue
is JS code that sets colors based on the theme at the time it's run -
eg the graph code, and the editor.
* switch night mode value on toggle
* expose current theme via a store; switch graphs to use it
https://github.com/ankitects/anki/issues/1471#issuecomment-972402492
* start using currentTheme in editor/components
This fixes basic editing - there are still components that need updating.
* add simple xcodeproj for code completion
* add helper to get currently-active system theme on macOS
* fix setCurrentTheme not being immediately available
* live update tag color
* style().name() doesn't work on Qt5
* automatic theme switching on Windows/Mac
* currentTheme -> pageTheme
* Replace `nightModeKey` with `pageTheme`
Co-authored-by: Damien Elmes <gpg@ankiweb.net>
ts_library() is deprecated and will presumably be dropped from a
future rules_nodejs, and it wasn't working with the jest tests
after updating, so we switch over to ts_project().
There are some downsides:
- It's a bit slower, as the worker mode doesn't appear to function
at the moment.
- Getting it working with a mix of source files and generated files
was quite tricky, especially as things behave differently on Windows,
and differently when editing with VS Code. Solved with a small patch
to the rules, and a wrapper script that copies everything into the
bin folder first. To keep VS Code working correctly as well, the built
files are symlinked into the source folder.
- TS libraries are not implicitly linked to node_modules, so they
can't be imported with an absolute name like "lib/proto" - we need
to use relative paths like "../lib/proto" instead. Adjusting "paths"
in tsconfig.json makes it work for TS compilation, but then it fails
at the esbuild stage. We could resolve it by wrapping the TS
libraries in a subsequent js_library() call, but that has the downside
of losing the transient dependencies, meaning they need to be listed
again. Alternatively we might be able to solve it in the future by
adjusting esbuild, but for now the paths have been made relative to
keep things simple.
Upsides:
- Along with updates to the Svelte tooling, Svelte typing has improved.
All exports made in a Svelte file are now visible to other files that
import them, and we no longer rebuild the Svelte files when TS files
are updated, as the Svelte files do no type checking themselves, and
are just a simple transpilation. Svelte-check now works on Windows again,
and there should be no errors when editing in VS Code after you've
built the project. The only downside seems to be that cmd+clicking
on a Svelte imports jumps to the .d.ts file instead of the original now;
presumably they'll fix that in a future plugin update.
- Each subfolder now has its own tsconfig.json, and tsc can be called
directly for testing purposes (but beware it will place build products
in the source tree): ts/node_modules/.bin/tsc -b ts
- We can drop the custom esbuild_toolchain, as it's included in the
latest rules_nodejs.
Other changes:
- "image_module_support" is moved into lib/, and imported with
<reference types=...>
- Images are now imported directly from their npm package; the
extra copy step has been removed.
Windows users may need to use "bazel clean" before building this,
due to old files lying around in the build folder.
- prettier's formatting has changed, so files needed to be reformatted
- dart is spitting out deprecation warnings like:
254 │ 2: $spacer / 2,
│ ^^^^^^^^^^^
╵
bazel-out/darwin-fastbuild/bin/ts/sass/bootstrap/_variables.scss 254:6 @import
ts/sass/button_mixins.scss 2:9 @use
ts/components/ColorPicker.svelte 2:5 root stylesheet
DEPRECATION WARNING: Using / for division is deprecated and will be removed in Dart Sass 2.0.0.
Recommendation: math.div($grid-gutter-width, 2)
- The previous commits moved the majority of the remaining global css
into components; move the remaining @emotion/css references into
ticks.scss and the styling of the Graph.svelte. This is not as elegant
as the emotion solution, but builds a whole lot faster, and most of
our styling can be scoped to a component anyway.
- Leave the .html files in ts/ for now. AnkiMobile uses them, and
AnkiDroid likely will in the future too. In the long run we'll likely
move to loading the JS into an existing page instead of loading a
separate page, but at that point we can just exclude the .html file from
copy_files_into_group() without affecting other clients.
Closes#1074
- svelte compilation outputs a separate .css file for each component
- compilation also adds an "import foo.css" to the top of each generated
.mjs file
- when the .mjs files are bundled into app.js, esbuild creates an app.css
as well
- graphs.scss was renamed to graphs_shared.scss and imported in the
top level GraphsPage. Henrik's style refactoring would be a better path
forward, but I needed to make this change for now, as the filenames were
conflicting.
The original reason for the catch-all message was users with bad
data such as decimal intervals, but those get automatically coerced
these days. The common case should now be invalid search strings, which
we can show verbatim.
While 'SvelteComponent | null' seems to make it into the .tsx file
created by svelte2tsx, the subsequent tsc call seems to discard the
'| null' part when creating the .d.ts file. Hack around it with a cast
for now; this may be fixed if we move to ts_project in the future.
Allows some type errors to surface that were only being picked up
on Windows.
The root cause seems to be TypeScript picking up other .d.ts/.tsx
files in the same folder, which it can only do on Windows due to the
lack of sandboxing. On other platforms the other files can't be found,
and tsc changes the types into 'any'.
I experimented with modifying rules_svelte to build all .tsx files up
front and convert them to .d.ts in bulk, but ran into further issues
with conflicting types, as the typings in svelte2tsx seem to conflict
with Svelte's built-in types, and passing the dependencies in explicitly
causes them to be checked even though --skipLibCheck is passed in to
TypeScript.
Forcing sandboxing off is an ugly hack, and our best approach moving
forward may be to switch to ts_project for the Svelte generation -
it does appear that rules_nodejs favours it over ts_library anyway.