- Dropped the protobuf extensions in favor of explicitly listing out
methods in both services if we want to implement both, as it's clearer.
- Move Service/Method wrappers into a separate crate that the various
clients can import, to easily get at the list of backend services and
their correct indices and comments.
* Automatically elide empty inputs and outputs to backend methods
* Refactor service generation
Despite the fact that the majority of our Protobuf service methods require
an open collection, they were not accessible with just a Collection
object. To access the methods (e.g. because we haven't gotten around to
exposing the correct API in Collection yet), you had to wrap the collection
in a Backend object, and pay a mutex-acquisition cost for each call, even
if you have exclusive access to the object.
This commit migrates the majority of service methods to the Collection, so
they can now be used directly, and improves the ergonomics a bit at the
same time.
The approach taken:
- The service generation now happens in rslib instead of anki_proto, which
avoids the need for trait constraints and associated types.
- Service methods are assumed to be collection-based by default. Instead of
implementing the service on Backend, we now implement it on Collection, which
means our methods no longer need to use self.with_col(...).
- We automatically generate methods in Backend which use self.with_col() to
delegate to the Collection method.
- For methods that are only appropriate for the backend, we add a flag in
the .proto file. The codegen uses this flag to write the method into a
BackendFooService instead of FooService, which the backend implements.
- The flag can also allows us to define separate implementations for collection
and backend, so we can e.g. skip the collection mutex in the i18n service
while also providing the service on a collection.
* Fix .no-reduce-motion missing from graphs spinner, and not being honored
* Begin migration from protobuf.js -> protobuf-es
Motivation:
- Protobuf-es has a nicer API: messages are represented as classes, and
fields which should exist are not marked as nullable.
- As it uses modules, only the proto messages we actually use get included
in our bundle output. Protobuf.js put everything in a namespace, which
prevented tree-shaking, and made it awkward to access inner messages.
- ./run after touching a proto file drops from about 8s to 6s on my machine. The tradeoff
is slower decoding/encoding (#2043), but that was mainly a concern for the
graphs page, and was unblocked by
37151213cd
Approach/notes:
- We generate the new protobuf-es interface in addition to existing
protobuf.js interface, so we can migrate a module at a time, starting
with the graphs module.
- rslib:proto now generates RPC methods for TS in addition to the Python
interface. The input-arg-unrolling behaviour of the Python generation is
not required here, as we declare the input arg as a PlainMessage<T>, which
marks it as requiring all fields to be provided.
- i64 is represented as bigint in protobuf-es. We were using a patch to
protobuf.js to get it to output Javascript numbers instead of long.js
types, but now that our supported browser versions support bigint, it's
probably worth biting the bullet and migrating to bigint use. Our IDs
fit comfortably within MAX_SAFE_INTEGER, but that may not hold for future
fields we add.
- Oneofs are handled differently in protobuf-es, and are going to need
some refactoring.
Other notable changes:
- Added a --mkdir arg to our build runner, so we can create a dir easily
during the build on Windows.
- Simplified the preference handling code, by wrapping the preferences
in an outer store, instead of a separate store for each individual
preference. This means a change to one preference will trigger a redraw
of all components that depend on the preference store, but the redrawing
is cheap after moving the data processing to Rust, and it makes the code
easier to follow.
- Drop async(Reactive).ts in favour of more explicit handling with await
blocks/updating.
- Renamed add_inputs_to_group() -> add_dependency(), and fixed it not adding
dependencies to parent groups. Renamed add() -> add_action() for clarity.
* Remove a couple of unused proto imports
* Migrate card info
* Migrate congrats, image occlusion, and tag editor
+ Fix imports for multi-word proto files.
* Migrate change-notetype
* Migrate deck options
* Bump target to es2020; simplify ts lib list
Have used caniuse.com to confirm Chromium 77, iOS 14.5 and the Chrome
on Android support the full es2017-es2020 features.
* Migrate import-csv
* Migrate i18n and fix missing output types in .js
* Migrate custom scheduling, and remove protobuf.js
To mostly maintain our old API contract, we make use of protobuf-es's
ability to convert to JSON, which follows the same format as protobuf.js
did. It doesn't cover all case: users who were previously changing the
variant of a type will need to update their code, as assigning to a new
variant no longer automatically removes the old one, which will cause an
error when we try to convert back from JSON. But I suspect the large majority
of users are adjusting the current variant rather than creating a new one,
and this saves us having to write proxy wrappers, so it seems like a
reasonable compromise.
One other change I made at the same time was to rename value->kind for
the oneofs in our custom study protos, as 'value' was easily confused
with the 'case/value' output that protobuf-es has.
With protobuf.js codegen removed, touching a proto file and invoking
./run drops from about 8s to 6s.
This closes#2043.
* Allow tree-shaking on protobuf types
* Display backend error messages in our ts alert()
* Make sourcemap generation opt-in for ts-run
Considerably slows down build, and not used most of the time.
A couple of motivations for this:
- genbackend.py was somewhat messy, and difficult to change with the
lack of types. The mobile clients used it as a base for their generation,
so improving it will make life easier for them too, once they're ported.
- It will make it easier to write a .ts generator in the future
- We currently implement a bunch of helper methods on protobuf types
which don't allow us to compile the protobuf types until we compile
the Anki crate. If we change this in the future, we will be able to
do more of the compilation up-front.
We no longer need to record the services in the proto file, as we can
extract the service order from the compiled protos. Support for map types
has also been added.