anki/python/requirements.bundle.txt

383 lines
25 KiB
Plaintext
Raw Normal View History

attrs==23.1.0 \
--hash=sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04 \
--hash=sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via jsonschema
beautifulsoup4==4.12.2 \
--hash=sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da \
--hash=sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# -r requirements.anki.in
# -r requirements.aqt.in
blinker==1.6.2 \
--hash=sha256:4afd3de66ef3a9f8067559fb7a1cbe555c17dcbe15971b05d1b625c3e7abe213 \
--hash=sha256:c3d739772abb7bc2860abf5f2ec284223d9ad5c76da018234f6f50d6f31ab1f0
# via flask
build==0.10.0 \
--hash=sha256:af266720050a66c893a6096a2f410989eeac74ff9a68ba194b3f6473e8e26171 \
--hash=sha256:d5b71264afdb5951d6704482aac78de887c80691c52b88a9ad195983ca2c9269
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# -r requirements.base.txt
# pip-tools
certifi==2023.5.7 \
--hash=sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7 \
--hash=sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via requests
charset-normalizer==3.1.0 \
--hash=sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6 \
--hash=sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1 \
--hash=sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e \
--hash=sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373 \
--hash=sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62 \
--hash=sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230 \
--hash=sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be \
--hash=sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c \
--hash=sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0 \
--hash=sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448 \
--hash=sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f \
--hash=sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649 \
--hash=sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d \
--hash=sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0 \
--hash=sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706 \
--hash=sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a \
--hash=sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59 \
--hash=sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23 \
--hash=sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5 \
--hash=sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb \
--hash=sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e \
--hash=sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e \
--hash=sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c \
--hash=sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28 \
--hash=sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d \
--hash=sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41 \
--hash=sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974 \
--hash=sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce \
--hash=sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f \
--hash=sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1 \
--hash=sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d \
--hash=sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8 \
--hash=sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017 \
--hash=sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31 \
--hash=sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7 \
--hash=sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8 \
--hash=sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e \
--hash=sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14 \
--hash=sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd \
--hash=sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d \
--hash=sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795 \
--hash=sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b \
--hash=sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b \
--hash=sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b \
--hash=sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203 \
--hash=sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f \
--hash=sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19 \
--hash=sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1 \
--hash=sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a \
--hash=sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac \
--hash=sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9 \
--hash=sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0 \
--hash=sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137 \
--hash=sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f \
--hash=sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6 \
--hash=sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5 \
--hash=sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909 \
--hash=sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f \
--hash=sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0 \
--hash=sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324 \
--hash=sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755 \
--hash=sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb \
--hash=sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854 \
--hash=sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c \
--hash=sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60 \
--hash=sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84 \
--hash=sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0 \
--hash=sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b \
--hash=sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1 \
--hash=sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531 \
--hash=sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1 \
--hash=sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11 \
--hash=sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326 \
--hash=sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df \
--hash=sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via requests
click==8.1.3 \
--hash=sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e \
--hash=sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48
# via
# -r requirements.base.txt
# flask
# pip-tools
colorama==0.4.6 \
--hash=sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44 \
--hash=sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6
# via -r requirements.base.txt
decorator==5.1.1 \
--hash=sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330 \
--hash=sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186
# via -r requirements.anki.in
distro==1.8.0 ; sys_platform != "darwin" and sys_platform != "win32" \
--hash=sha256:02e111d1dc6a50abb8eed6bf31c3e48ed8b0830d1ea2a1b78c61765c2513fdd8 \
--hash=sha256:99522ca3e365cac527b44bde033f64c6945d90eb9f769703caaec52b09bbd3ff
# via -r requirements.anki.in
flask==2.3.2 \
--hash=sha256:77fd4e1249d8c9923de34907236b747ced06e5467ecac1a7bb7115ae0e9670b0 \
--hash=sha256:8c2f9abd47a9e8df7f0c3f091ce9497d011dc3b31effcf4c85a6e2b50f4114ef
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# -r requirements.aqt.in
# flask-cors
flask-cors==4.0.0 \
--hash=sha256:bc3492bfd6368d27cfe79c7821df5a8a319e1a6d5eab277a3794be19bdc51783 \
--hash=sha256:f268522fcb2f73e2ecdde1ef45e2fd5c71cc48fe03cffb4b441c6d1b40684eb0
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via -r requirements.aqt.in
idna==3.4 \
--hash=sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4 \
--hash=sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2
# via requests
importlib-metadata==6.7.0 \
--hash=sha256:1aaf550d4f73e5d6783e7acb77aec43d49da8017410afae93822cc9cca98c4d4 \
--hash=sha256:cb52082e659e97afc5dac71e79de97d8681de3aa07ff18578330904a9d18e5b5
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# flask
# markdown
itsdangerous==2.1.2 \
--hash=sha256:2c2349112351b88699d8d4b6b075022c0808887cb7ad10069318a8b0bc88db44 \
--hash=sha256:5dbbc68b317e5e42f327f9021763545dc3fc3bfe22e6deb96aaf1fc38874156a
# via flask
jinja2==3.1.2 \
--hash=sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852 \
--hash=sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61
# via flask
jsonschema==4.1.2 \
--hash=sha256:166870c8ab27bd712a8627e0598de4685bd8d199c4d7bd7cacc3d941ba0c6ca0 \
--hash=sha256:5c1a282ee6b74235057421fd0f766ac5f2972f77440927f6471c9e8493632fac
# via
# -r requirements.aqt.in
# -r requirements.bundle.in
markdown==3.4.3 \
--hash=sha256:065fd4df22da73a625f14890dd77eb8040edcbd68794bcd35943be14490608b2 \
--hash=sha256:8bf101198e004dc93e84a12a7395e31aac6a9c9942848ae1d99b9d72cf9b3520
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via -r requirements.anki.in
markupsafe==2.1.3 \
--hash=sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e \
--hash=sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e \
--hash=sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431 \
--hash=sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686 \
--hash=sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559 \
--hash=sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc \
--hash=sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c \
--hash=sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0 \
--hash=sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4 \
--hash=sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9 \
--hash=sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575 \
--hash=sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba \
--hash=sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d \
--hash=sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3 \
--hash=sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00 \
--hash=sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155 \
--hash=sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac \
--hash=sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52 \
--hash=sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f \
--hash=sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8 \
--hash=sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b \
--hash=sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24 \
--hash=sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea \
--hash=sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198 \
--hash=sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0 \
--hash=sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee \
--hash=sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be \
--hash=sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2 \
--hash=sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707 \
--hash=sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6 \
--hash=sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58 \
--hash=sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779 \
--hash=sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636 \
--hash=sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c \
--hash=sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad \
--hash=sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee \
--hash=sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc \
--hash=sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2 \
--hash=sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48 \
--hash=sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7 \
--hash=sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e \
--hash=sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b \
--hash=sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa \
--hash=sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5 \
--hash=sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e \
--hash=sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb \
--hash=sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9 \
--hash=sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57 \
--hash=sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc \
--hash=sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# jinja2
# werkzeug
orjson==3.9.1 \
--hash=sha256:06f6ab4697fab090517f295915318763a97a12ee8186054adf21c1e6f6abbd3d \
--hash=sha256:08927970365d2e1f3ce4894f9ff928a7b865d53f26768f1bbdd85dd4fee3e966 \
--hash=sha256:09faf14f74ed47e773fa56833be118e04aa534956f661eb491522970b7478e3b \
--hash=sha256:0b53b5f72cf536dd8aa4fc4c95e7e09a7adb119f8ff8ee6cc60f735d7740ad6a \
--hash=sha256:0b7ab18d55ecb1de543d452f0a5f8094b52282b916aa4097ac11a4c79f317b86 \
--hash=sha256:0fd828e0656615a711c4cc4da70f3cac142e66a6703ba876c20156a14e28e3fa \
--hash=sha256:103952c21575b9805803c98add2eaecd005580a1e746292ed2ec0d76dd3b9746 \
--hash=sha256:125f63e56d38393daa0a1a6dc6fedefca16c538614b66ea5997c3bd3af35ef26 \
--hash=sha256:15d28872fb055bf17ffca913826e618af61b2f689d2b170f72ecae1a86f80d52 \
--hash=sha256:19f70ba1f441e1c4bb1a581f0baa092e8b3e3ce5b2aac2e1e090f0ac097966da \
--hash=sha256:1e4d905338f9ef32c67566929dfbfbb23cc80287af8a2c38930fb0eda3d40b76 \
--hash=sha256:20f2804b5a1dbd3609c086041bd243519224d47716efd7429db6c03ed28b7cc3 \
--hash=sha256:24d4ddaa2876e657c0fd32902b5c451fd2afc35159d66a58da7837357044b8c2 \
--hash=sha256:2cb0121e6f2c9da3eddf049b99b95fef0adf8480ea7cb544ce858706cdf916eb \
--hash=sha256:31229f9d0b8dc2ef7ee7e4393f2e4433a28e16582d4b25afbfccc9d68dc768f8 \
--hash=sha256:375d65f002e686212aac42680aed044872c45ee4bc656cf63d4a215137a6124a \
--hash=sha256:393d0697d1dfa18d27d193e980c04fdfb672c87f7765b87952f550521e21b627 \
--hash=sha256:402f9d3edfec4560a98880224ec10eba4c5f7b4791e4bc0d4f4d8df5faf2a006 \
--hash=sha256:46b4facc32643b2689dfc292c0c463985dac4b6ab504799cf51fc3c6959ed668 \
--hash=sha256:4751cee4a7b1daeacb90a7f5adf2170ccab893c3ab7c5cea58b45a13f89b30b3 \
--hash=sha256:48a27da6c7306965846565cc385611d03382bbd84120008653aa2f6741e2105d \
--hash=sha256:49c0d78dcd34626e2e934f1192d7c052b94e0ecadc5f386fd2bda6d2e03dadf5 \
--hash=sha256:503eb86a8d53a187fe66aa80c69295a3ca35475804da89a9547e4fce5f803822 \
--hash=sha256:5d1dbf36db7240c61eec98c8d21545d671bce70be0730deb2c0d772e06b71af3 \
--hash=sha256:6d173d3921dd58a068c88ec22baea7dbc87a137411501618b1292a9d6252318e \
--hash=sha256:761b6efd33c49de20dd73ce64cc59da62c0dab10aa6015f582680e0663cc792c \
--hash=sha256:78d9a2a4b2302d5ebc3695498ebc305c3568e5ad4f3501eb30a6405a32d8af22 \
--hash=sha256:80a1e384626f76b66df615f7bb622a79a25c166d08c5d2151ffd41f24c4cc104 \
--hash=sha256:8515867713301fa065c58ec4c9053ba1a22c35113ab4acad555317b8fd802e50 \
--hash=sha256:9e20bca5e13041e31ceba7a09bf142e6d63c8a7467f5a9c974f8c13377c75af2 \
--hash=sha256:a4cc5d21e68af982d9a2528ac61e604f092c60eed27aef3324969c68f182ec7e \
--hash=sha256:ae47ef8c0fe89c4677db7e9e1fb2093ca6e66c3acbee5442d84d74e727edad5e \
--hash=sha256:c4434b7b786fdc394b95d029fb99949d7c2b05bbd4bf5cb5e3906be96ffeee3b \
--hash=sha256:d1c2b0b4246c992ce2529fc610a446b945f1429445ece1c1f826a234c829a918 \
--hash=sha256:d3a40b0fbe06ccd4d6a99e523d20b47985655bcada8d1eba485b1b32a43e4904 \
--hash=sha256:d4b68d01a506242316a07f1d2f29fb0a8b36cee30a7c35076f1ef59dce0890c1 \
--hash=sha256:d4edee78503016f4df30aeede0d999b3cb11fb56f47e9db0e487bce0aaca9285 \
--hash=sha256:d8ae0467d01eb1e4bcffef4486d964bfd1c2e608103e75f7074ed34be5df48cc \
--hash=sha256:d96747662d3666f79119e5d28c124e7d356c7dc195cd4b09faea4031c9079dc9 \
--hash=sha256:d9dd4abe6c6fd352f00f4246d85228f6a9847d0cc14f4d54ee553718c225388f \
--hash=sha256:db373a25ec4a4fccf8186f9a72a1b3442837e40807a736a815ab42481e83b7d0 \
--hash=sha256:db774344c39041f4801c7dfe03483df9203cbd6c84e601a65908e5552228dd25 \
--hash=sha256:e186ae76b0d97c505500664193ddf508c13c1e675d9b25f1f4414a7606100da6 \
--hash=sha256:ec53d648176f873203b9c700a0abacab33ca1ab595066e9d616f98cdc56f4434 \
--hash=sha256:ec7c8a0f1bf35da0d5fd14f8956f3b82a9a6918a3c6963d718dfd414d6d3b604 \
--hash=sha256:f9a744e212d4780ecd67f4b6b128b2e727bee1df03e7059cddb2dfe1083e7dc4
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via -r requirements.anki.in
packaging==23.1 \
--hash=sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61 \
--hash=sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# -r requirements.base.txt
# build
pip-tools==6.13.0 \
--hash=sha256:50943f151d87e752abddec8158622c34ad7f292e193836e90e30d87da60b19d9 \
--hash=sha256:61d46bd2eb8016ed4a924e196e6e5b0a268cd3babd79e593048720db23522bb1
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via -r requirements.base.txt
protobuf==4.23.3 \
--hash=sha256:0149053336a466e3e0b040e54d0b615fc71de86da66791c592cc3c8d18150bf8 \
--hash=sha256:08fe19d267608d438aa37019236db02b306e33f6b9902c3163838b8e75970223 \
--hash=sha256:29660574cd769f2324a57fb78127cda59327eb6664381ecfe1c69731b83e8288 \
--hash=sha256:2991f5e7690dab569f8f81702e6700e7364cc3b5e572725098215d3da5ccc6ac \
--hash=sha256:3b01a5274ac920feb75d0b372d901524f7e3ad39c63b1a2d55043f3887afe0c1 \
--hash=sha256:3bcbeb2bf4bb61fe960dd6e005801a23a43578200ea8ceb726d1f6bd0e562ba1 \
--hash=sha256:447b9786ac8e50ae72cae7a2eec5c5df6a9dbf9aa6f908f1b8bda6032644ea62 \
--hash=sha256:514b6bbd54a41ca50c86dd5ad6488afe9505901b3557c5e0f7823a0cf67106fb \
--hash=sha256:5cb9e41188737f321f4fce9a4337bf40a5414b8d03227e1d9fbc59bc3a216e35 \
--hash=sha256:7a92beb30600332a52cdadbedb40d33fd7c8a0d7f549c440347bc606fb3fe34b \
--hash=sha256:84ea0bd90c2fdd70ddd9f3d3fc0197cc24ecec1345856c2b5ba70e4d99815359 \
--hash=sha256:aca6e86a08c5c5962f55eac9b5bd6fce6ed98645d77e8bfc2b952ecd4a8e4f6a \
--hash=sha256:cc14358a8742c4e06b1bfe4be1afbdf5c9f6bd094dff3e14edb78a1513893ff5
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via -r requirements.anki.in
pyproject-hooks==1.0.0 \
--hash=sha256:283c11acd6b928d2f6a7c73fa0d01cb2bdc5f07c57a2eeb6e83d5e56b97976f8 \
--hash=sha256:f271b298b97f5955d53fb12b72c1fb1948c22c1a6b70b315c54cedaca0264ef5
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# -r requirements.base.txt
# build
pyrsistent==0.19.3 \
--hash=sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8 \
--hash=sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440 \
--hash=sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a \
--hash=sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c \
--hash=sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3 \
--hash=sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393 \
--hash=sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9 \
--hash=sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da \
--hash=sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf \
--hash=sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64 \
--hash=sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a \
--hash=sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3 \
--hash=sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98 \
--hash=sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2 \
--hash=sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8 \
--hash=sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf \
--hash=sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc \
--hash=sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7 \
--hash=sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28 \
--hash=sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2 \
--hash=sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b \
--hash=sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a \
--hash=sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64 \
--hash=sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19 \
--hash=sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1 \
--hash=sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9 \
--hash=sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via jsonschema
pysocks==1.7.1 \
--hash=sha256:08e69f092cc6dbe92a0fdd16eeb9b9ffbc13cadfe5ca4c7bd92ffb078b293299 \
--hash=sha256:2725bd0a9925919b9b51739eea5f9e2bae91e83288108a9ad338b2e3a4435ee5 \
--hash=sha256:3f8804571ebe159c380ac6de37643bb4685970655d3bba243530d6558b799aa0
# via requests
2023-05-24 08:09:15 +02:00
requests==2.31.0 \
--hash=sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f \
--hash=sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1
# via
# -r requirements.anki.in
# -r requirements.aqt.in
send2trash==1.8.2 \
--hash=sha256:a384719d99c07ce1eefd6905d2decb6f8b7ed054025bb0e618919f945de4f679 \
--hash=sha256:c132d59fa44b9ca2b1699af5c86f57ce9f4c5eb56629d5d55fbb7a35f84e2312
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via -r requirements.aqt.in
soupsieve==2.4.1 \
--hash=sha256:1c1bfee6819544a3447586c889157365a27e10d88cde3ad3da0cf0ddf646feb8 \
--hash=sha256:89d12b2d5dfcd2c9e8c22326da9d9aa9cb3dfab0a83a024f05704076ee8d35ea
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via beautifulsoup4
tomli==2.0.1 \
--hash=sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc \
--hash=sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f
# via
# -r requirements.base.txt
# build
# pyproject-hooks
urllib3==2.0.3 \
--hash=sha256:48e7fafa40319d358848e1bc6809b208340fafe2096f1725d05d67443d0483d1 \
--hash=sha256:bee28b5e56addb8226c96f7f13ac28cb4c301dd5ea8a6ca179c0b9835e032825
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via requests
waitress==2.1.2 \
--hash=sha256:7500c9625927c8ec60f54377d590f67b30c8e70ef4b8894214ac6e4cad233d2a \
--hash=sha256:780a4082c5fbc0fde6a2fcfe5e26e6efc1e8f425730863c04085769781f51eba
# via -r requirements.aqt.in
werkzeug==2.3.6 \
--hash=sha256:935539fa1413afbb9195b24880778422ed620c0fc09670945185cce4d91a8890 \
--hash=sha256:98c774df2f91b05550078891dee5f0eb0cb797a522c757a2452b9cee5b202330
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via flask
wheel==0.40.0 \
--hash=sha256:cd1196f3faee2b31968d626e1731c94f99cbdb67cf5a46e4f5656cbee7738873 \
--hash=sha256:d236b20e7cb522daf2390fa84c55eea81c5c30190f90f29ae2ca1ad8355bf247
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# -r requirements.base.txt
# pip-tools
zipp==3.15.0 \
--hash=sha256:112929ad649da941c23de50f356a2b5570c954b65150642bccdd66bf194d224b \
--hash=sha256:48904fc76a60e542af151aded95726c1a5c34ed43ab4134b597665c86d7ad556
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via importlib-metadata
# The following packages are considered to be unsafe in a requirements file:
pip==23.1.2 \
--hash=sha256:0e7c86f486935893c708287b30bd050a36ac827ec7fe5e43fe7cb198dd835fba \
--hash=sha256:3ef6ac33239e4027d9a5598a381b9d30880a1477e50039db2eac6e8a8f6d1b18
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# -r requirements.base.txt
# pip-tools
setuptools==68.0.0 \
--hash=sha256:11e52c67415a381d10d6b462ced9cfb97066179f0e871399e006c4ab101fc85f \
--hash=sha256:baf1fdb41c6da4cd2eae722e135500da913332ab3f2f5c7d33af9b492acb5235
Move away from Bazel (#2202) (for upgrading users, please see the notes at the bottom) Bazel brought a lot of nice things to the table, such as rebuilds based on content changes instead of modification times, caching of build products, detection of incorrect build rules via a sandbox, and so on. Rewriting the build in Bazel was also an opportunity to improve on the Makefile-based build we had prior, which was pretty poor: most dependencies were external or not pinned, and the build graph was poorly defined and mostly serialized. It was not uncommon for fresh checkouts to fail due to floating dependencies, or for things to break when trying to switch to an older commit. For day-to-day development, I think Bazel served us reasonably well - we could generally switch between branches while being confident that builds would be correct and reasonably fast, and not require full rebuilds (except on Windows, where the lack of a sandbox and the TS rules would cause build breakages when TS files were renamed/removed). Bazel achieves that reliability by defining rules for each programming language that define how source files should be turned into outputs. For the rules to work with Bazel's sandboxing approach, they often have to reimplement or partially bypass the standard tools that each programming language provides. The Rust rules call Rust's compiler directly for example, instead of using Cargo, and the Python rules extract each PyPi package into a separate folder that gets added to sys.path. These separate language rules allow proper declaration of inputs and outputs, and offer some advantages such as caching of build products and fine-grained dependency installation. But they also bring some downsides: - The rules don't always support use-cases/platforms that the standard language tools do, meaning they need to be patched to be used. I've had to contribute a number of patches to the Rust, Python and JS rules to unblock various issues. - The dependencies we use with each language sometimes make assumptions that do not hold in Bazel, meaning they either need to be pinned or patched, or the language rules need to be adjusted to accommodate them. I was hopeful that after the initial setup work, things would be relatively smooth-sailing. Unfortunately, that has not proved to be the case. Things frequently broke when dependencies or the language rules were updated, and I began to get frustrated at the amount of Anki development time I was instead spending on build system upkeep. It's now about 2 years since switching to Bazel, and I think it's time to cut losses, and switch to something else that's a better fit. The new build system is based on a small build tool called Ninja, and some custom Rust code in build/. This means that to build Anki, Bazel is no longer required, but Ninja and Rust need to be installed on your system. Python and Node toolchains are automatically downloaded like in Bazel. This new build system should result in faster builds in some cases: - Because we're using cargo to build now, Rust builds are able to take advantage of pipelining and incremental debug builds, which we didn't have with Bazel. It's also easier to override the default linker on Linux/macOS, which can further improve speeds. - External Rust crates are now built with opt=1, which improves performance of debug builds. - Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript compiler. This results in faster builds, by deferring typechecking to test/check time, and by allowing more work to happen in parallel. As an example of the differences, when testing with the mold linker on Linux, adding a new message to tags.proto (which triggers a recompile of the bulk of the Rust and TypeScript code) results in a compile that goes from about 22s on Bazel to about 7s in the new system. With the standard linker, it's about 9s. Some other changes of note: - Our Rust workspace now uses cargo-hakari to ensure all packages agree on available features, preventing unnecessary rebuilds. - pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge source files and generated files into a single folder for running. By telling VSCode about the extra search path, code completion now works with generated files without needing to symlink them into the source folder. - qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py. Instead, the generated files are now placed in a separate _aqt package that's added to the path. - ts/lib is now exposed as @tslib, so the source code and generated code can be provided under the same namespace without a merging step. - MyPy and PyLint are now invoked once for the entire codebase. - dprint will be used to format TypeScript/json files in the future instead of the slower prettier (currently turned off to avoid causing conflicts). It can automatically defer to prettier when formatting Svelte files. - svelte-check is now used for typechecking our Svelte code, which revealed a few typing issues that went undetected with the old system. - The Jest unit tests now work on Windows as well. If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes: - please remove node_modules and .bazel - install rustup (https://rustup.rs/) - install rsync if not already installed (on windows, use pacman - see docs/windows.md) - install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and place on your path, or from your distro/homebrew if it's 1.10+) - update .vscode/settings.json from .vscode.dist
2022-11-27 06:24:20 +01:00
# via
# -r requirements.base.txt
# pip-tools