anki/rslib/src/template.rs

795 lines
24 KiB
Rust
Raw Normal View History

2020-01-10 12:00:48 +01:00
// Copyright: Ankitects Pty Ltd and contributors
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
2020-01-16 07:37:44 +01:00
use crate::err::{Result, TemplateError};
2020-01-10 12:04:52 +01:00
use crate::template_filters::apply_filters;
use crate::text::strip_sounds;
use lazy_static::lazy_static;
use nom;
use nom::branch::alt;
use nom::bytes::complete::tag;
use nom::error::ErrorKind;
use nom::sequence::delimited;
use regex::Regex;
2019-12-29 23:12:44 +01:00
use std::borrow::Cow;
use std::collections::{HashMap, HashSet};
use std::iter;
pub type FieldMap<'a> = HashMap<&'a str, u16>;
type TemplateResult<T> = std::result::Result<T, TemplateError>;
// Lexing
//----------------------------------------
#[derive(Debug)]
pub enum Token<'a> {
Text(&'a str),
Replacement(&'a str),
OpenConditional(&'a str),
OpenNegated(&'a str),
CloseConditional(&'a str),
}
/// a span of text, terminated by {{ or end of string
pub(crate) fn text_until_open_handlebars(s: &str) -> nom::IResult<&str, &str> {
let end = s.len();
let limited_end = end.min(s.find("{{").unwrap_or(end));
let (output, input) = s.split_at(limited_end);
if output.is_empty() {
Err(nom::Err::Error((input, ErrorKind::TakeUntil)))
} else {
Ok((input, output))
}
}
/// a span of text, terminated by }} or end of string
pub(crate) fn text_until_close_handlebars(s: &str) -> nom::IResult<&str, &str> {
let end = s.len();
let limited_end = end.min(s.find("}}").unwrap_or(end));
let (output, input) = s.split_at(limited_end);
if output.is_empty() {
Err(nom::Err::Error((input, ErrorKind::TakeUntil)))
} else {
Ok((input, output))
}
}
/// text outside handlebars
fn text_token(s: &str) -> nom::IResult<&str, Token> {
text_until_open_handlebars(s).map(|(input, output)| (input, Token::Text(output)))
}
/// text wrapped in handlebars
fn handle_token(s: &str) -> nom::IResult<&str, Token> {
delimited(tag("{{"), text_until_close_handlebars, tag("}}"))(s)
.map(|(input, output)| (input, classify_handle(output)))
}
/// classify handle based on leading character
fn classify_handle(s: &str) -> Token {
let start = s.trim_start_matches('{').trim();
if start.len() < 2 {
return Token::Replacement(start);
}
if start.starts_with('#') {
Token::OpenConditional(&start[1..].trim_start())
} else if start.starts_with('/') {
Token::CloseConditional(&start[1..].trim_start())
} else if start.starts_with('^') {
Token::OpenNegated(&start[1..].trim_start())
} else {
Token::Replacement(start)
}
}
fn next_token(input: &str) -> nom::IResult<&str, Token> {
alt((handle_token, text_token))(input)
}
fn tokens(template: &str) -> impl Iterator<Item = TemplateResult<Token>> {
let mut data = template;
std::iter::from_fn(move || {
if data.is_empty() {
return None;
}
match next_token(data) {
Ok((i, o)) => {
data = i;
Some(Ok(o))
}
2020-01-16 07:37:44 +01:00
Err(_e) => Some(Err(TemplateError::NoClosingBrackets(data.to_string()))),
}
})
}
// Parsing
//----------------------------------------
#[derive(Debug, PartialEq)]
enum ParsedNode<'a> {
Text(&'a str),
Replacement {
key: &'a str,
filters: Vec<&'a str>,
},
Conditional {
key: &'a str,
children: Vec<ParsedNode<'a>>,
},
NegatedConditional {
key: &'a str,
children: Vec<ParsedNode<'a>>,
},
}
#[derive(Debug)]
pub struct ParsedTemplate<'a>(Vec<ParsedNode<'a>>);
impl ParsedTemplate<'_> {
2019-12-29 23:12:44 +01:00
/// Create a template from the provided text.
///
/// The legacy alternate syntax is not supported, so the provided text
/// should be run through without_legacy_template_directives() first.
pub fn from_text(template: &str) -> TemplateResult<ParsedTemplate> {
let mut iter = tokens(template);
Ok(Self(parse_inner(&mut iter, None)?))
}
}
fn parse_inner<'a, I: Iterator<Item = TemplateResult<Token<'a>>>>(
iter: &mut I,
open_tag: Option<&'a str>,
) -> TemplateResult<Vec<ParsedNode<'a>>> {
let mut nodes = vec![];
while let Some(token) = iter.next() {
use Token::*;
nodes.push(match token? {
Text(t) => ParsedNode::Text(t),
Replacement(t) => {
let mut it = t.rsplit(':');
ParsedNode::Replacement {
key: it.next().unwrap(),
filters: it.collect(),
}
}
OpenConditional(t) => ParsedNode::Conditional {
key: t,
children: parse_inner(iter, Some(t))?,
},
OpenNegated(t) => ParsedNode::NegatedConditional {
key: t,
children: parse_inner(iter, Some(t))?,
},
CloseConditional(t) => {
if let Some(open) = open_tag {
if open == t {
// matching closing tag, move back to parent
return Ok(nodes);
}
}
2020-01-16 07:37:44 +01:00
return Err(TemplateError::ConditionalNotOpen(t.to_string()));
}
});
}
if let Some(open) = open_tag {
2020-01-16 07:37:44 +01:00
Err(TemplateError::ConditionalNotClosed(open.to_string()))
} else {
Ok(nodes)
}
}
// Legacy support
//----------------------------------------
static ALT_HANDLEBAR_DIRECTIVE: &str = "{{=<% %>=}}";
/// Convert legacy alternate syntax to standard syntax.
pub fn without_legacy_template_directives(text: &str) -> Cow<str> {
if text.trim_start().starts_with(ALT_HANDLEBAR_DIRECTIVE) {
text.trim_start()
.trim_start_matches(ALT_HANDLEBAR_DIRECTIVE)
.replace("<%", "{{")
.replace("%>", "}}")
.into()
} else {
text.into()
}
}
// Checking if template is empty
//----------------------------------------
impl ParsedTemplate<'_> {
/// true if provided fields are sufficient to render the template
pub fn renders_with_fields(&self, nonempty_fields: &HashSet<&str>) -> bool {
!template_is_empty(nonempty_fields, &self.0)
}
}
fn template_is_empty<'a>(nonempty_fields: &HashSet<&str>, nodes: &[ParsedNode<'a>]) -> bool {
use ParsedNode::*;
for node in nodes {
match node {
// ignore normal text
Text(_) => (),
2019-12-25 04:01:19 +01:00
Replacement { key, filters } => {
// Anki doesn't consider a type: reference as a required field
if filters.contains(&"type") {
continue;
}
if nonempty_fields.contains(*key) {
// a single replacement is enough
return false;
}
}
Conditional { key, children } => {
if !nonempty_fields.contains(*key) {
continue;
}
if !template_is_empty(nonempty_fields, children) {
return false;
}
}
NegatedConditional { .. } => {
// negated conditionals ignored when determining card generation
continue;
}
}
}
true
}
// Rendering
//----------------------------------------
#[derive(Debug, PartialEq)]
pub enum RenderedNode {
Text {
text: String,
},
Replacement {
field_name: String,
current_text: String,
/// Filters are in the order they should be applied.
filters: Vec<String>,
},
}
pub(crate) struct RenderContext<'a> {
pub fields: &'a HashMap<&'a str, &'a str>,
pub nonempty_fields: &'a HashSet<&'a str>,
pub question_side: bool,
pub card_ord: u16,
pub front_text: Option<Cow<'a, str>>,
}
impl ParsedTemplate<'_> {
/// Render the template with the provided fields.
///
/// Replacements that use only standard filters will become part of
/// a text node. If a non-standard filter is encountered, a partially
/// rendered Replacement is returned for the calling code to complete.
fn render(&self, context: &RenderContext) -> TemplateResult<Vec<RenderedNode>> {
let mut rendered = vec![];
render_into(&mut rendered, self.0.as_ref(), context)?;
Ok(rendered)
}
}
fn render_into(
rendered_nodes: &mut Vec<RenderedNode>,
nodes: &[ParsedNode],
context: &RenderContext,
) -> TemplateResult<()> {
use ParsedNode::*;
for node in nodes {
match node {
Text(text) => {
append_str_to_nodes(rendered_nodes, text);
}
Replacement {
key: key @ "FrontSide",
..
} => {
if let Some(front_side) = &context.front_text {
// a fully rendered front side is available, so we can
// bake it into the output
append_str_to_nodes(rendered_nodes, front_side.as_ref());
} else {
// the front side contains unknown filters, and must
// be completed by the Python code
rendered_nodes.push(RenderedNode::Replacement {
field_name: (*key).to_string(),
filters: vec![],
current_text: "".into(),
});
}
}
Replacement { key: "", filters } if !filters.is_empty() => {
// if a filter is provided, we accept an empty field name to
// mean 'pass an empty string to the filter, and it will add
// its own text'
rendered_nodes.push(RenderedNode::Replacement {
field_name: "".to_string(),
current_text: "".to_string(),
filters: filters.iter().map(|&f| f.to_string()).collect(),
})
}
Replacement { key, filters } => {
// apply built in filters if field exists
let (text, remaining_filters) = match context.fields.get(key) {
Some(text) => apply_filters(text, filters, key, context),
None => {
// unknown field encountered
2020-01-16 08:44:26 +01:00
let filters_str = filters
.iter()
.rev()
.cloned()
2020-01-16 08:44:26 +01:00
.chain(iter::once(""))
.collect::<Vec<_>>()
.join(":");
2020-01-16 08:44:26 +01:00
return Err(TemplateError::FieldNotFound {
field: (*key).to_string(),
filters: filters_str,
});
}
};
// fully processed?
if remaining_filters.is_empty() {
append_str_to_nodes(rendered_nodes, text.as_ref())
} else {
rendered_nodes.push(RenderedNode::Replacement {
field_name: (*key).to_string(),
filters: remaining_filters,
current_text: text.into(),
});
}
}
Conditional { key, children } => {
if context.nonempty_fields.contains(key) {
render_into(rendered_nodes, children.as_ref(), context)?;
}
}
NegatedConditional { key, children } => {
if !context.nonempty_fields.contains(key) {
render_into(rendered_nodes, children.as_ref(), context)?;
}
}
};
}
Ok(())
}
/// Append to last node if last node is a string, else add new node.
fn append_str_to_nodes(nodes: &mut Vec<RenderedNode>, text: &str) {
if let Some(RenderedNode::Text {
text: ref mut existing_text,
}) = nodes.last_mut()
{
// append to existing last node
existing_text.push_str(text)
} else {
// otherwise, add a new string node
nodes.push(RenderedNode::Text {
text: text.to_string(),
})
}
}
/// True if provided text contains only whitespace and/or empty BR/DIV tags.
fn field_is_empty(text: &str) -> bool {
lazy_static! {
static ref RE: Regex = Regex::new(
r#"(?xsi)
^(?:
[[:space:]]
|
</?(?:br|div)\ ?/?>
)*$
"#
)
.unwrap();
}
RE.is_match(text)
}
fn nonempty_fields<'a>(fields: &'a HashMap<&str, &str>) -> HashSet<&'a str> {
fields
.iter()
.filter_map(|(name, val)| {
if !field_is_empty(val) {
Some(*name)
} else {
None
}
})
.collect()
}
// Rendering both sides
//----------------------------------------
#[allow(clippy::implicit_hasher)]
pub fn render_card(
qfmt: &str,
afmt: &str,
field_map: &HashMap<&str, &str>,
card_ord: u16,
2020-01-16 07:37:44 +01:00
) -> Result<(Vec<RenderedNode>, Vec<RenderedNode>)> {
// prepare context
let mut context = RenderContext {
fields: field_map,
nonempty_fields: &nonempty_fields(field_map),
question_side: true,
card_ord,
front_text: None,
};
// question side
let qnorm = without_legacy_template_directives(qfmt);
let qnodes = ParsedTemplate::from_text(qnorm.as_ref())?.render(&context)?;
// if the question side didn't have any unknown filters, we can pass
// FrontSide in now
if let [RenderedNode::Text { ref text }] = *qnodes.as_slice() {
context.front_text = Some(strip_sounds(text));
}
// answer side
context.question_side = false;
let anorm = without_legacy_template_directives(afmt);
let anodes = ParsedTemplate::from_text(anorm.as_ref())?.render(&context)?;
2020-01-16 07:37:44 +01:00
Ok((qnodes, anodes))
}
// Field requirements
//----------------------------------------
#[derive(Debug, Clone, PartialEq)]
pub enum FieldRequirements {
Any(HashSet<u16>),
All(HashSet<u16>),
None,
}
impl ParsedTemplate<'_> {
/// Return fields required by template.
///
/// This is not able to represent negated expressions or combinations of
/// Any and All, but is compatible with older Anki clients.
///
/// In the future, it may be feasible to calculate the requirements
/// when adding cards, instead of caching them up front, which would mean
/// the above restrictions could be lifted. We would probably
/// want to add a cache of non-zero fields -> available cards to avoid
/// slowing down bulk operations like importing too much.
pub fn requirements(&self, field_map: &FieldMap) -> FieldRequirements {
let mut nonempty: HashSet<_> = Default::default();
let mut ords = HashSet::new();
for (name, ord) in field_map {
nonempty.clear();
nonempty.insert(*name);
if self.renders_with_fields(&nonempty) {
ords.insert(*ord);
}
}
if !ords.is_empty() {
return FieldRequirements::Any(ords);
}
nonempty.extend(field_map.keys());
ords.extend(field_map.values().copied());
for (name, ord) in field_map {
// can we remove this field and still render?
nonempty.remove(name);
if self.renders_with_fields(&nonempty) {
ords.remove(ord);
}
nonempty.insert(*name);
}
if !ords.is_empty() && self.renders_with_fields(&nonempty) {
FieldRequirements::All(ords)
} else {
FieldRequirements::None
}
}
}
// Tests
//---------------------------------------
#[cfg(test)]
mod test {
use super::{FieldMap, ParsedNode::*, ParsedTemplate as PT};
use crate::err::TemplateError;
use crate::template::{
field_is_empty, nonempty_fields, render_card, without_legacy_template_directives,
FieldRequirements, RenderContext, RenderedNode,
};
use crate::text::strip_html;
use std::collections::{HashMap, HashSet};
use std::iter::FromIterator;
#[test]
fn test_field_empty() {
assert_eq!(field_is_empty(""), true);
assert_eq!(field_is_empty(" "), true);
assert_eq!(field_is_empty("x"), false);
assert_eq!(field_is_empty("<BR>"), true);
assert_eq!(field_is_empty("<div />"), true);
assert_eq!(field_is_empty(" <div> <br> </div>\n"), true);
assert_eq!(field_is_empty(" <div>x</div>\n"), false);
}
#[test]
fn test_parsing() {
let tmpl = PT::from_text("foo {{bar}} {{#baz}} quux {{/baz}}").unwrap();
assert_eq!(
tmpl.0,
vec![
Text("foo "),
Replacement {
key: "bar",
filters: vec![]
},
Text(" "),
Conditional {
key: "baz",
children: vec![Text(" quux ")]
}
]
);
let tmpl = PT::from_text("{{^baz}}{{/baz}}").unwrap();
assert_eq!(
tmpl.0,
vec![NegatedConditional {
key: "baz",
children: vec![]
}]
);
PT::from_text("{{#mis}}{{/matched}}").unwrap_err();
PT::from_text("{{/matched}}").unwrap_err();
PT::from_text("{{#mis}}").unwrap_err();
// whitespace
assert_eq!(
PT::from_text("{{ tag }}").unwrap().0,
vec![Replacement {
key: "tag",
filters: vec![]
}]
);
// stray closing characters (like in javascript) are ignored
assert_eq!(
PT::from_text("text }} more").unwrap().0,
vec![Text("text }} more")]
);
}
#[test]
fn test_nonempty() {
let fields = HashSet::from_iter(vec!["1", "3"].into_iter());
let mut tmpl = PT::from_text("{{2}}{{1}}").unwrap();
assert_eq!(tmpl.renders_with_fields(&fields), true);
tmpl = PT::from_text("{{2}}{{type:cloze:1}}").unwrap();
2019-12-25 04:01:19 +01:00
assert_eq!(tmpl.renders_with_fields(&fields), false);
tmpl = PT::from_text("{{2}}{{4}}").unwrap();
assert_eq!(tmpl.renders_with_fields(&fields), false);
tmpl = PT::from_text("{{#3}}{{^2}}{{1}}{{/2}}{{/3}}").unwrap();
assert_eq!(tmpl.renders_with_fields(&fields), false);
}
#[test]
fn test_requirements() {
let field_map: FieldMap = vec!["a", "b"]
.iter()
.enumerate()
.map(|(a, b)| (*b, a as u16))
.collect();
let mut tmpl = PT::from_text("{{a}}{{b}}").unwrap();
assert_eq!(
tmpl.requirements(&field_map),
FieldRequirements::Any(HashSet::from_iter(vec![0, 1].into_iter()))
);
tmpl = PT::from_text("{{#a}}{{b}}{{/a}}").unwrap();
assert_eq!(
tmpl.requirements(&field_map),
FieldRequirements::All(HashSet::from_iter(vec![0, 1].into_iter()))
);
tmpl = PT::from_text("{{c}}").unwrap();
assert_eq!(tmpl.requirements(&field_map), FieldRequirements::None);
tmpl = PT::from_text("{{^a}}{{b}}{{/a}}").unwrap();
assert_eq!(tmpl.requirements(&field_map), FieldRequirements::None);
tmpl = PT::from_text("{{#a}}{{#b}}{{a}}{{/b}}{{/a}}").unwrap();
assert_eq!(
tmpl.requirements(&field_map),
FieldRequirements::All(HashSet::from_iter(vec![0, 1].into_iter()))
);
2019-12-25 04:01:19 +01:00
tmpl = PT::from_text("{{a}}{{type:b}}").unwrap();
assert_eq!(
tmpl.requirements(&field_map),
FieldRequirements::Any(HashSet::from_iter(vec![0].into_iter()))
);
}
2019-12-29 23:12:44 +01:00
#[test]
fn test_alt_syntax() {
let input = "
{{=<% %>=}}
<%Front%>
<% #Back %>
<%/Back%>";
let output = "
{{Front}}
{{ #Back }}
{{/Back}}";
assert_eq!(without_legacy_template_directives(input), output);
}
#[test]
fn test_render_single() {
let map: HashMap<_, _> = vec![("F", "f"), ("B", "b"), ("E", " ")]
.into_iter()
.collect();
let ctx = RenderContext {
fields: &map,
nonempty_fields: &nonempty_fields(&map),
question_side: true,
card_ord: 1,
front_text: None,
};
use crate::template::RenderedNode as FN;
let mut tmpl = PT::from_text("{{B}}A{{F}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap(),
vec![FN::Text {
text: "bAf".to_owned()
},]
);
// empty
tmpl = PT::from_text("{{#E}}A{{/E}}").unwrap();
assert_eq!(tmpl.render(&ctx).unwrap(), vec![]);
// missing
tmpl = PT::from_text("{{^M}}A{{/M}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap(),
vec![FN::Text {
text: "A".to_owned()
},]
);
// nested
tmpl = PT::from_text("{{^E}}1{{#F}}2{{#B}}{{F}}{{/B}}{{/F}}{{/E}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap(),
vec![FN::Text {
text: "12f".to_owned()
},]
);
// unknown filters
tmpl = PT::from_text("{{one:two:B}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap(),
vec![FN::Replacement {
field_name: "B".to_owned(),
filters: vec!["two".to_string(), "one".to_string()],
current_text: "b".to_owned()
},]
);
// partially unknown filters
// excess colons are ignored
tmpl = PT::from_text("{{one::text:B}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap(),
vec![FN::Replacement {
field_name: "B".to_owned(),
filters: vec!["one".to_string()],
current_text: "b".to_owned()
},]
);
// known filter
tmpl = PT::from_text("{{text:B}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap(),
vec![FN::Text {
text: "b".to_owned()
}]
);
// unknown field
tmpl = PT::from_text("{{X}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap_err(),
2020-01-16 08:44:26 +01:00
TemplateError::FieldNotFound {
field: "X".to_owned(),
filters: "".to_owned()
}
);
// unknown field with filters
tmpl = PT::from_text("{{foo:text:X}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap_err(),
2020-01-16 08:44:26 +01:00
TemplateError::FieldNotFound {
field: "X".to_owned(),
filters: "foo:text:".to_owned()
}
);
// a blank field is allowed if it has filters
tmpl = PT::from_text("{{filter:}}").unwrap();
assert_eq!(
tmpl.render(&ctx).unwrap(),
vec![FN::Replacement {
field_name: "".to_string(),
current_text: "".to_string(),
filters: vec!["filter".to_string()]
}]
);
}
fn get_complete_template(nodes: &Vec<RenderedNode>) -> Option<&str> {
if let [RenderedNode::Text { ref text }] = nodes.as_slice() {
Some(text.as_str())
} else {
None
}
}
#[test]
fn test_render_full() {
// make sure front and back side renders cloze differently
let fmt = "{{cloze:Text}}";
let clozed_text = "{{c1::one}} {{c2::two::hint}}";
let map: HashMap<_, _> = vec![("Text", clozed_text)].into_iter().collect();
2020-01-16 07:37:44 +01:00
let (qnodes, anodes) = render_card(fmt, fmt, &map, 0).unwrap();
assert_eq!(
strip_html(get_complete_template(&qnodes).unwrap()),
"[...] two"
);
assert_eq!(
strip_html(get_complete_template(&anodes).unwrap()),
"one two"
);
// FrontSide should render if only standard modifiers were used
2020-01-16 07:37:44 +01:00
let (_qnodes, anodes) =
render_card("{{kana:text:Text}}", "{{FrontSide}}", &map, 1).unwrap();
assert_eq!(get_complete_template(&anodes).unwrap(), clozed_text);
// But if a custom modifier was used, it's deferred to the Python code
2020-01-16 07:37:44 +01:00
let (_qnodes, anodes) = render_card("{{custom:Text}}", "{{FrontSide}}", &map, 1).unwrap();
assert_eq!(get_complete_template(&anodes).is_none(), true)
}
}