
Task 1
a)

Below you can see the class diagram of our solution of 1 b).
The Component is represented by Item. The Atomics Article and Image inherit from the
abstract class AuthoredItem. NewsCollection is the Composite.



Task 2

(2- a)

Composite Pattern
The Composite pattern allows for the composition of objects into tree structures to represent
part-whole hierarchies. In this case, MatcherSet can contain multiple SearchMatcher objects,
including other MatcherSet objects, allowing for complex search criteria to be built.

Include:
- Component interface

- SearchMatcher. Defines the common interface for all objects in the
composition.

- Composite abstract class
- MatcherSet. Acts as a container for SearchMatcher objects and can contain

other MatcherSet objects
- Concrete Composites

- AndMatcher. Provide specific behavior by extending abstract composite
class: returns true only if ALL matchers in the set match the entry

- OrMatcher. Provide specific behavior by extending abstract composite
class: returns true if ANY matcher in the set matches the entry

- Leaf
- NotMatcher. Represents an individual matcher that does not contain other

matchers.

Difference: In the classic Composite pattern, a program usually has methods to add and
remove child components freely. However, in the MatcherSet class the design is a bit more
restrictive. Instead of allowing us to remove matchers (children), it uses a protected list to



manage them. This means new matchers can be added, but once they're in, they can't be
taken out. This approach keeps things simpler and more controlled, but it also means less
flexibility compared to the traditional Composite pattern.

Factory Method Pattern
The Factory Method pattern usually has a method that decides which specific class to
instantiate. In the MatcherSets class, the build method creates either an AndMatcher
or an OrMatcher based on the MatcherType provided. This way, the client doesn't need
to know the details of how each matcher is created; we just call the build method and get
the right type of matcher.

Include:
- Creator

- MatcherSets. Declares the factory method that returns an object of type
MatcherSet.

- Abstract Product
- MatcherSet. Defines the interface of objects the factory method creates.

- Concrete Products
- AndMatcher. Implement the MatcherSet interface and are created by the

factory method.
- OrMatcher. Implement the MatcherSet interface and are created by the

factory method.

Difference:
For the most part, the current implementation of Composite pattern works without
differences from the classic one. Often with the Composite pattern instances are created, but
since this is not required, the build method is called directly.



(2 - b)
For importers to create file import logic for different formats, the Importer class provides a
flexible foundation.

The Importer subclasses (such as format importers) do not wrap or improve other Importer
instances; instead, they implement their own logic.
There is no dynamic composition of behavior; instead, each importer subclass (such as
BibTeXImporter or RISImporter) defines distinct behavior.

The only exception to this is the CustomImporter class: This class wraps the Importer class
and allows to customize the behaviour of the Importer class and its subclasses.
The importer class is designed for extensibility, where each subclass is a standalone
implementation for specific formats.

The implementation of the importer class varies from the original design pattern of the
decorator pattern. It is rather a mixture of the decorator pattern and the composite pattern.
But for the solution of this task we will focus on which classes represent which classes in the
decorator pattern.

Component: Importer
In this implementation the Component is not an abstract class or an interface, but an actual
class.

Concrete Component: Importer & subclasses (except CustomImporter)
Importer itself and its subclasses (except CustomImporter) are concrete implementations of
the Component.

Decorator: CustomImporter
CustomImporter wraps the Component Importer and subsequently all its subclasses.

Concrete Decorator: CustomImporter
CustomImporter is not only a Decorator, but a Concrete Decorator.

What’s special about this implementation is that the Importer is the Component as well as a
Concrete Component. Similarly the CustomImporter is the Decorator and a Concrete
Decorator.

A cleaner implementation of the Decorator pattern would create an abstract class or an
interface as the Component, as well as an interface or abstract class as the Decorator.


