
Exercise 3
Group members: Daniel Langbein, Chiheb Eddine Saidi, Artem
Semenovykh, Sam Tadjiky

1 IntelliJ refactorings

Use Interface where possible:
This refactoring searches the code for occurrences of a class that can be replaced by the
interface that it’s implementing.
This refactoring is not represented on Refactoring Guru, but if it were it would probably be
found under Dealing with Generalization.

Safe delete:
This refactoring deletes a file and also deletes all references to that file.
Refactoring Guru shows explicit refactoring for codes. Safe deleting a file is therefore not
represented.

Migrate packages and classes:
This refactoring updates references to packages and classes according to a migration map
which you can define yourself.
Package or class migration is not shown on Refactoring Guru. It is necessary for
maintenance, but not for getting rid of code smells.



2 Refactoring the class structure

(a)
- We moved the levelModel field up from all except the

NavigationBetweenViewController class to a common superclass
AbstractLevelController. This was done by using IntelliJs “Extract (field to)
superclass” refactoring.

- Then we created a singleton of AudioLoadHelper as only one instance of this is
needed. This reduced the duplicate audioLoadHelper objects within multiple of the
controller classes.

- As GameController and LevelEditorController had another common field (named
navigationBetweenViewController or nav), we moved this up to a superclass
AbstractNavController. This superclass itself is a subclass of the previously
introduced class AbstractLevelController. We were using the same refactoring tool of
IntelliJ again.

- In the same way we created the super class AbstractKeyController for
LevelEditorKeyController and GameKeyController. Here we did not move a field, but
instead moved many of the functions up to the super class. In the refactoring tool we



did also select to move the “implements KeyListener” up:

- In the superclass, we moved the code of the different switch-cases from the
keyPressed method into individual methods (e.g. left, right, up, down, etc.). This
way we avoided to have two very similar switch-case constructs in both of the
sub-classes. Instead, the subclasses are now overriding the behavior of the methods
left, right, etc. where needed. In this step we have used the “extract (to method)” tool
in IntelliJ.

Class diagram after refactoring:





(b)
The priority field determines what happens when Rockford (priority = 1) collides with another
object (priority in [0,2,3]): if priority is lower than 1 the Rockfold can destroy the object and
take its place. Otherwise the object will block his movement. Since every class has its own
priority across all instances (static), it is unnecessary to declare the priority field in the super
class as each subclass will redefine it either way into a static field. Thus we can use the
Push Down Field refactoring



3 Refactoring a method

a) Method rename

Looking at the code, this method manages the falling behavior and interactions of
boulders and diamonds with Character and environment. The method handles:

● Boulder/diamond falling straight down
(makeThisDisplayableElementFall(x,y))

● Boulder sliding off other boulders (makeThisBoulderSlideLeft(x,y))
● Boulder/diamond crushing Rockford (playSound("die"))
● Boulder interactions with magic walls (else if (spriteNameBelow ==

"magicwall"))
● Boulder/diamond destroying brick walls (exploseThisBrickWall(x, y))
● Boulder being pushed by Rockford (moveThisBoulderToRight(x, y))

Based on this, a suitable name for this method would be
manageFallingObjectBehavior - because method shows how objects
(boulders and diamonds) which could fall, behave during interaction

We can fix the entire structure and references using the "Rename" refactoring
function

b) Falling queries
To get rid of the constant call of the same element in the if clause, we can create a variable
in which we will put the necessary method.
The refactoring function "Introduce Variable" helps us with this task - it creates a variable
based on the repetition given to it

DisplayableElementModel displayableElementModel =
this.levelModel.getGroundLevelModel()[x][y];

c) Methods for getGrounfLevelModel
In fact, we reuse one method "get element" several times in different variations. First, we
move the method out of the "getGroundLevelModel" line using the Extract Method
refactoring.

public DisplayableElementModel getElement(int x, int y) {
return this.levelModel.getGroundLevelModel()[x][y];

}



Then when extracting other methods with a change in position on the axes, we reuse the
already created method, replacing the signature and output

public DisplayableElementModel getElementBelow(int x, int y) {
return getElement(x,y + 1);

}

Finally we Move Methods to the LevelMethod class, since this data originally belongs to it.

This is result in LevelMethod:
public DisplayableElementModel[][] getGroundLevelModel() {

return groundGrid;
}

public DisplayableElementModel getElement(int x, int y) {
return getGroundLevelModel()[x][y];

}

public DisplayableElementModel getElementBelow(int x, int y) {
return getElement(x,y + 1);

}

public DisplayableElementModel getElementBelowLeft(int x, int y) {
return getElement(x - 1, y + 1);

}

public DisplayableElementModel getElementBelowRight(int x, int y) {
return getElement(x + 1, y + 1);

}

public DisplayableElementModel getElementRight(int x, int y) {
return getElement(x + 1, y);

}

public DisplayableElementModel getElementLeft(int x, int y) {
return getElement(x - 1, y );

}

public DisplayableElementModel getElementTwoBelow(int x, int y) {
return getElement(x , y + 2);

}

In the BolderAndDiamondCollector class we just call methods, specifying only x and y
without additional calculations

d) Refactoring the manageFallingObjectBehavior
We can see that the aforementioned method is too long and handles many
behaviors. We can refactor the method by breaking it down into smaller methods that
each one handles one logic at time using the Extract Method Refactoring from IntelliJ




