Exercise 9

1 Data-driven testing of a dice game
iImplementation

a)

For K2 (c) we specified which Exception is expected to be thrown and what message it
should have.

The corresponding test is named

and runs successfully.

For K3 (a) we didn’'t know which Exception should be thrown so we asserted that a
SelectionException should be thrown and we also specified what the message should/could
look like.

The corresponding test is named

and fails. This is because the code does not throw an exception as is expected by the
specification of the test scenario. We used a parameterized test to cover both scenarios:
Dice has value 1 or dice has value 5.

To make the second test run successfully as well the implementation of the dicegame needs
to be altered. The method does not differentiate between dice which
were fixed in this round and those that were fixed in a previous round. Therefore it allows
permanently fixed dice (from previous rounds) to be unfixed. Instead an exception should be
thrown, whenever someone tries to alter the state of a permanently fixed dice.

b)

We implemented the test cases K3 (b) and K3 (c). We implemented the test cases as
parameterized tests. Therefore our paths are the following:

Kib—-K2a—K3b
Kib—->K2b—-K3b

Kib—K2a—K3c
Kib—-K2b—->K3c



2 Interface Testing

The created tests can be found in the test module at
src/test/java/org/jabref/model/search/matchers

The SearchMatcherTest is the abstract test class of the SearchMatcher interface.
It is extended by:

- AndMatcherTest

- OrMatcherTest

- NotMatcherTest

- NotAndMatcherTest (combinations)

- NotOrMatcherTest (combinations)

Note for the tutor:

There was some confusion around whether we should build the interface test for
SearchMatcher or MatcherSet. We ultimately decided to go with SearchMatcher, because
NotMatcher implements SearchMatcher (but does not extend MatcherSet).



