Empirical Software Engineering (2023) 28:132
https://doi.org/10.1007/510664-023-10367-y

®

Check for
updates

Do RESTful API design rules have an impact on the
understandability of Web APIs?

Justus Bogner'® - Sebastian Kotstein? - Timo Pfaff>

Accepted: 13 July 2023 / Published online: 18 September 2023
© The Author(s) 2023

Abstract

Context Web APIs are one of the most used ways to expose application functionality on the
Web, and their understandability is important for efficiently using the provided resources.
While many API design rules exist, empirical evidence for the effectiveness of most rules is
lacking.

Objective We therefore wanted to study 1) the impact of RESTful API design rules on
understandability, 2) if rule violations are also perceived as more difficult to understand, and
3) if demographic attributes like REST-related experience have an influence on this.
Method We conducted a controlled Web-based experiment with 105 participants, from both
industry and academia and with different levels of experience. Based on a hybrid between a
crossover and a between-subjects design, we studied 12 design rules using API snippets in
two complementary versions: one that adhered to a rule and one that was a violation of this
rule. Participants answered comprehension questions and rated the perceived difficulty.
Results For 11 of the 12 rules, we found that violation performed significantly worse than
rule for the comprehension tasks. Regarding the subjective ratings, we found significant
differences for 9 of the 12 rules, meaning that most violations were subjectively rated as more
difficult to understand. Demographics played no role in the comprehension performance for
violation.

Conclusions Our results provide first empirical evidence for the importance of following
design rules to improve the understandability of Web APIs, which is important for researchers,
practitioners, and educators.

Keywords Web API design - Understandability - controlled experiment

Communicated by: Sebastian Baltes

B Justus Bogner
j-bogner@vu.nl

Sebastian Kotstein

sebastian.kotstein @reutlingen-university.de

University of Stuttgart, Institute of Software Engineering, Stuttgart, Germany
Reutlingen University, Herman Hollerith Zentrum, Reutlingen, Germany

Independent researcher, Germany; research conducted while at University of Stuttgart, Institute of
Software Engineering, Stuttgart, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10367-y&domain=pdf
http://orcid.org/0000-0001-5788-0991

132 Page2of35 Empirical Software Engineering (2023) 28:132

1 Introduction

Technologies for Web Application Programming Interfaces (APIs) like WSDL, SOAP, and
HTTP are the technical foundations for realizing modern Web applications (Jacobson et al.,
2011). These technologies allow developers to independently implement smaller software
components and share their functionality on the Internet. Successfully reusing an existing
component, however, depends on the ability to understand its purpose and behavior, espe-
cially its API, which hides internal logic and complexity. In cases where neither additional
documentation nor developers of the original component can be consulted, the Web API
might even be the first and only point of contact with the exposed functionality. Therefore,
understandability is an important quality attribute for the design of Web APIs (Palma et al.,
2017).

Over the last two decades, HTTP combined with other well-established Web standards
like URI has become a popular choice for realizing Web APIs that expose their functionality
through Web resources (Schermann et al., 2016; Bogner et al., 2019). In these resource-
oriented Web APIs, the role of HTTP has shifted from a transport mechanism for XML-based
messages to an application-layer protocol for interacting with the respective API (Pautasso
etal., 2008). With Representational State Transfer (REST) (Fielding and Taylor, 2002), there
exists an architectural style that formalizes the proper use of Web technologies like HTTP
and URIs in Web applications. REST is considered a foundation for high-quality, so-called
RESTful API design, and it describes a set of constraints for the recommended behavior of
Web applications, e.g, HTTP-based Web APIs. However, it does not instruct developers how
to implement this behavior (Rodriguez et al., 2016).

Since there exist various interpretations and (mis-)understandings among practitioners
how RESTful API design looks like, users and integrators of these services are confronted
with a multitude of heterogeneous interface designs, which can make it difficult to understand
a given Web API (Palma et al., 2021). Therefore, several works have proposed design rules
and best practices to complement the original REST constraints and to guide developers
when designing and implementing Web APIs, e.g., Pautasso (2014), Palma et al. (2017),
Richardson and Ruby (2007), and Massé (2011). In most cases, however, we do not have
sufficient empirical evidence for the effectiveness of these RESTful API design rules, i.e., if
they really have a positive impact on the quality of Web APIs.

Additionally, multiple studies analyzed the degree of REST compliance in practice by sys-
tematically comparing real-world Web APIs against proposed design rules. Many of these
works, e.g., Neumann et al. (2018), Renzel et al. (2012), and Rodriguez et al. (2016), con-
cluded that only a small degree of real-world Web APIs are truly RESTful. This suggests that
many practitioners perceive proposed design rules differently in terms of their importance.
We have provided confirmation for this in previous work (Kotstein and Bogner, 2021). In
a Delphi study, we confronted industry practitioners with 82 RESTful API design rules by
Massé (2011) to find out which ones they perceived as important and how they perceived
their impact on software quality. Only 45 out of 82 rules were rated with high or medium
importance, and maintainability and usability were the most associated quality attributes.
Both of these attributes are closely related to understandability.

To confirm these opinion-based results with additional empirical evidence, we conducted
a controlled Web-based experiment, in which we presented 12 Web API snippets to 105
participants with at least basic REST-related experience. Each API snippet existed in two
versions, one adhering to a design rule and one violating the rule (see, e.g., Fig. 1). The
participants’ task was to answer comprehension questions about each snippet, while we

@ Springer

Empirical Software Engineering (2023) 28:132 Page30of35 132

* - *| g
GET /groups/{groupId}/members GET /groups/{groupId}/member
Parameters Parameters
Name Description Name Description
groupld * rauird e groupld * 1"
string string
(path) (path)

What does this endpoint return? What does this endpoint return?

O Choose one of the following answers @ Choose one of the following answers

A specific group that a specific member is part of A specific member that belongs to a specific group

An array of groups that a specific member is part of A specific group that a specific member is part of

A map containing all groups and members A map containing all groups and members

A specific member that belongs to a specific group @ an array of members that belong to a specific group

® An array of members that belong to a specific group An array of groups that a specific member is part of

Fig. 1 Example of a return value question based on the rule PluralNoun (rule on the left, violation on the
right, correct answer is checked)

measured the required time. Furthermore, participants also had to rate the perceived dif-
ficulty to understand an API snippet. In this paper, we present the design and results
of our controlled experiment on the understandability impact of RESTful API design
rules.

2 Background and related work

We start with a discussion of terminology around Web APIs and REST and explain how we
use these terms in the paper. Furthermore, we mention existing works that propose rules and
best practices for RESTful API design, and present existing studies about Web API quality.

2.1 Terminology

In this paper, we focus on resource-oriented HTTP-based Web APIs. In distinction to SOAP-
/WSDL-based APIs (Pautasso et al., 2008), we use the term Web A P for any resource-oriented
API that exposes its functionality via HTTP and URIs at the application level. We consider
a Web API as RESTful, i.e., a so-called RESTful API, if the respective Web API satisfies
all mandatory REST constraints defined by Fielding and Taylor (2002). As a consequence,
a Web API that implements only some RESTful API design rules cannot automatically be
considered as RESTful.

@ Springer

132 Page4of35 Empirical Software Engineering (2023) 28:132

2.2 Best practices for REST in practice

To combat the potentially harmful heterogeneity of interface designs among Web APIs,
several works tried to translate the REST constraints into more concrete guidelines to instruct
developers how to achieve good RESTful design with HTTP. RESTful API design rules and
best practices have been proposed in scientific articles, e.g., by Pautasso (2014), Petrillo et al.
(2016), Palmaet al. (2014), and Palma et al. (2017), but also in textbooks, e.g., by Richardson
and Ruby 2007, Massé (2011), and Webber et al. (2010). Moreover, Leonard Richardson
developed a maturity model (Martin Fowler, 2010) allowing Web developers to estimate the
degree of REST compliance of their Web APIs. Incorporating the principles of REST, the
model defines four levels of maturity.

— Level 0: Web APIs offer their functionality over a single URI and use HTTP solely as a
transport protocol for tunneling requests through this endpoint by using POST. Examples
of level 0 are SOAP- and XML-RPC-based services.

— Level 1: Web APIs use the concept of resources, i.e., expose different URIs for different
resources. However, operations are still identified via URIs or specified in the request
payload rather than by different HTTP methods.

— Level 2: Web APIs use HTTP mechanisms and semantics, including different HTTP
methods for different operations and semantically correct status codes. Level 2 partially
aligns with the Uniform Interface constraint.

— Level 3: Web APIs additionally conform to the HATEOAS constraint (“Hypermedia As
The Engine Of Application State”) by embedding hypermedia controls into responses
to advertise semantic relations between resources and to offer navigational support to
clients.

Despite the existence of these design rules and guidelines, multiple studies, e.g., by Neu-
mann et al. (2018), Renzel et al. (2012), and Rodriguez et al. (2016), revealed that only a small
number of existing Web APIs are indeed RESTful, although many Web APIs claimed to be
RESTful (Neumann et al., 2018). This suggests that there is still no common understanding
of how a RESTful API should look like in industrial practice. Providing empirical evidence
may therefore help to identify the effective and important rules from the large collection of
existing guidelines.

2.3 Related work

Several works investigated the quality of real-world Web APIs, mainly by analyzing inter-
faces, their descriptions, and exchanged HTTP messages.

Rodriguez et al. (2016) analyzed more than 78 GB of HTTP traffic to gain insights into
the use of best practices in Web API design. They applied API-specific heuristics to extract
API-related messages from the whole data set and validated these extracted API requests
and responses against 18 heuristics aligned with REST design principles and best practices.
For a few heuristics, they described their negative effect on maintainability and evolvability
when violating associated design principles and best practices. Moreover, they mapped the
heuristics to the levels of the Richardson maturity model to estimate the level of REST
compliance of investigated Web APIs. The paper concluded that only a few APIs reach level
3 of the maturity model, but the majority of investigated APIs complied with level 2.

The governance of RESTful APIs was the focus for Haupt et al. (2018): using a framework
developed by Haupt et al. (2017), they conducted a structural analysis of 286 real-world Web

@ Springer

Empirical Software Engineering (2023) 28:132 Page50f35 132

APIs. In detail, the framework takes an interface description, converts it into a canonical
metamodel, and calculates several metrics to support API governance. As a usage example,
they demonstrated how calculated metrics can be used to estimate the user-perceived com-
plexity of an API, which is related to API understandability. For this, they randomly selected
10 of their 286 APIs and let 9 software developers rank them based on their perceived com-
plexity. Based on their knowledge and experience, the authors then defined several metrics
for user-perceived complexity and calculated these metrics for the 10 APIs. As a result, some
calculated metrics coincided with the developers’ judgments and were proposed for auto-
matic complexity estimation. A follow-up confirmatory study with a larger sample size to
substantiate this exploratory approach is missing so far.

An approach similar to Haupt etal. (2018) was used in a study by Bogneretal. (2019). They
proposed a modular framework, the RESTful API Metric Analyzer (RAMA), which calculates
maintainability metrics from interface descriptions and enables the automatic evaluation of
Web APIs. More precisely, RAMA converts an interface description into a hierarchical model
and calculates 10 service-based maintainability metrics. In a benchmark run, the authors
applied RAMA to a set of 1,737 real-world APIs, and calculated quartile-based thresholds
for the metrics. However, relating the metrics to other software quality correlates is missing
to evaluate their effectiveness.

The impact of good and poor Web API design on understandability and reusability has
been investigated in a series of publications by Palma et al.: in (Palma et al., 2017), the authors
defined 12 linguistic patterns and antipatterns focusing on URI design in Web APIs, which
may impact understandability and reusability of such APIs. Moreover, they proposed algo-
rithms for their detection and implemented them as part of the Service-Oriented Framework
Sfor Antipatterns (SOFA). They used SOFA to detect linguistic (anti-)patterns in 18 real-world
APIs, with the result that most of the investigated APIs used appropriate resource names and
did not use verbs within URI paths. However, URI paths often did not convey hierarchical
structures.

In another study, Palma et al. (2021) tried to answer whether a well-designed RESTful API
also has good linguistic quality and, vice versa, whether poorly designed Web APIs have poor
linguistic quality. For this, they used SOFA to analyze 8 Google APIs and to detect 9 design
patterns and antipatterns, as well as 12 linguistic patterns and antipatterns. However, their
statistical tests revealed only negligible relationships between RESTful design and linguistic
design qualities.

Subsequently, they extended SOFA with further linguistic (anti-)patterns, improved
approaches for their detection, and applied the linguistic quality analysis on Web APIs from
the IoT domain (Palma et al., 2022b) or compared the quality between public, partner, and
private APIs (Palma et al., 2022a).

In summary, existing studies assessed the quality of real-world Web APIs by collecting
metrics and detecting (anti-)patterns. The latter are somewhat related to RESTful API design
rules and best practices that should, in theory, improve several quality aspects of an APL
However, in many cases, there is no empirical evidence for the effectiveness of the impact
of these design rules and best practices on software quality, especially on understandability.
Haupt et al. (2018) and Kotstein and Bogner (2021) used subjective ratings, but no studies in
which human participants solve comprehension or maintenance tasks have been conducted.
To the best of our knowledge, our experiment is the first study that investigated the under-
standability impact of violating RESTful API design rules from the perspective of human
API consumers.

@ Springer

132 Page6of35

Empirical Software Engineering (2023) 28:132

Table 1 Experiment overview

Goal Study the impact of design rules on the understandability of Web APIs

Study objects 12 design rules compiled from Massé (2011) and Richardson and Ruby
(2007), two functionally equivalent API snippets per rule (one follows
the rule, one violates it)

Participants 105 people with at least basic REST-related experience (both students and
professionals, both from academia and industry)

Setting Online experiment via LimeSurvey

Tasks Answering comprehension question about API snippets for RQ1 (12 per
participant), rating the difficulty to understand an API snippet for RQ2
(12 per participant)

Dependent variables Timed actual understandability (TAU) for RQI, perceived difficulty rating
for RQ2

Treatments API snippet follows a rule (version 1) or API snippet contains a violation

of a rule (version 2)

Other independent variables Demographic attributes like REST-related experience or current role (RQ3)

Design Hybrid between crossover and between-subjects design (2 counterbalanced

sequences, each with 6 tasks for rule and 6 for violation)

3 Research design

In this section, we describe the details of our methodology. We roughly follow the reporting
structure for software engineering experiments proposed by Jedlitschka et al. (2008). Inspired
by the experiment characteristics discussed by Wyrich et al. (2022), Table 1 provides a
quick overview of the most important characteristics of the study. For transparency and
reproducibility, we publish our experiment artifacts on Zenodo'.

3.1 Research questions

We investigated three different research questions in this study.
RQ1: Which design rules have a significant impact on the understandability of Web APIs?

Our hypothesis for this central, confirmatory RQ was that each selected rule should
improve understandability, i.e., the effectiveness and efficiency of grasping the functionality
and intended purpose of a Web API endpoint.

RQ2: Which design rules have a significant impact on software professionals’ perceived
difficulty while understanding Web APIs?

For the confirmatory part of this RQ, we hypothesized that API snippets with rule violations
are rated as more difficult to understand. Additionally, we analyzed the correlation between
actual and perceived understandability in an exploratory part to identify potential differences.
RQ3: How do participant demographics influence the effectiveness and perception of design
rules for understanding Web APIs?

We did not have strong hypotheses for this exploratory RQ. Nonetheless, we had some
intuitions about attributes that may be interesting to analyze. For example, it could be possible
that adhering to the design rules mostly has an influence on experienced professionals but not
on students (or vice versa). Furthermore, some rules might require the participant to know
about the Richardson maturity model or some rule violations might be perceived as more

1 https://doi.org/10.5281/zenodo.7381500

@ Springer

https://doi.org/10.5281/zenodo.7381500

Empirical Software Engineering (2023) 28:132 Page70f35 132

critical by participants from academia or from industry. During the study design phase, we
selected some general demographic attributes plus several specific ones for the experiment
context.

3.2 Participants and sampling

The only requirements for participation were basic knowledge of REST and HTTP, as well
as the ability to understand English. Our goal was to attract participants from diverse back-
grounds and experience levels, e.g., both students and professionals, both participants from
industry and academia, etc. We used convenience sampling mixed with referral-chain sam-
pling, i.e., we distributed the call for participation within our personal networks via email, and
kindly asked for forwarding to relevant circles (Baltes and Ralph, 2022). A similar message
was displayed after the experiment to encourage sharing. Students were recruited via internal
mailing lists of several universities. Moreover, we advertised the study via social media, such
as Twitter?, LinkedIn?, XING*, and in several technology-related subreddits”.

3.3 Experiment objects

In this experiment, the objects under study were 12 design rules for RESTful APIs that have
been proposed in the literature. They are summarized in Table 2 together with short identifiers
that we use throughout the rest of the paper. Rule selection was guided by the results of our
previous Delphi study (Kotstein and Bogner, 2021), i.e., we focused on rules from Massé
(2011) that were perceived as very important by industry experts, with an influence on main-
tainability or usability. Additionally, we included three instances of the PathHierarchy
rule proposed by Richardson and Ruby (2007). While this rule was not part of our previous
study, it has strong relationships to Massé’s rules Variable path segments may be substi-
tuted with identity-based values and Forward slash separator (/) must be used to indicate
a hierarchical relationship. Both of these rules fulfill the above criteria, i.e., high impor-
tance plus influence on maintainability or usability. In the following, the rule descriptions
are taken from Massé (2011) and Richardson and Ruby (2007) respectively. For each rule,
we also present the concrete endpoint pair that was used in the experiment, one version for
following the rule and one for violating it. These concrete Web API examples and the viola-
tion versions are based on our industry experience, but also on existing public APIs that we
identified via the APIs Guru repository®. For our experiment, the chosen real-world exam-
ples were adapted to simplify them and to avoid that participants are already familiar with
the presented HTTP endpoints. During the pilot, we discussed the created pairs of rule and
violation with external experts to validate if the violation snippets were not strongly exag-
gerated. Several snippets were adapted based on this feedback, and one task was dropped
entirely.

2 https://www.twitter.com
3 https://www.linkedin.com
4 https://www.xing.com

5 https://www.reddit.com
6 https://apis.guru

@ Springer

https://www.twitter.com
https://www.linkedin.com
https://www.xing.com
https://www.reddit.com
https://apis.guru

132 Page8of35

Empirical Software Engineering (2023) 28:132

Table 2 Selected design rules for RESTful APIs

ID Rule Source Category
PluralNoun A plural noun should be used ~ Massé (2011) URI Design
for collection and store
names
VerbController A verb or verb phrase should Massé (2011) URI Design
be used for controller names
CRUDNames CRUD function names should Massé (2011) URI Design
not be used in URIs
PathHierarchy Use path variables to encode Richardson and Ruby (2007) Hierarchy Design
(3 versions) hierarchy
NoTunnel GET and POST must not be Massé (2011) Request Methods
used to tunnel other request
methods
GETRetrieve GET must be used to retrieve ~ Massé (2011) Request Methods
a representation of a
resource
POSTCreate POST must be used to create a Massé (2011) Request Methods
new resource in a collection
NoRC200Error 200 (OK) mustnotbe used Massé (2011) HTTP Status Codes
to communicate errors in
the response body
RC401 401 (Unauthorized) Massé (2011) HTTP Status Codes
must be used when there is
a problem with the client’s
credentials
RC415 415 (Unsupported Massé (2011) HTTP Status Codes

Media Type) must be
used when the media type
of a request’s payload
cannot be processed

3.3.1 URI design

The three rules in this category are concerned with the concrete design of URI paths in an
APL

PluralNoun Massé (2011) defines this rule for both collections and stores, which we merge
into a single rule for simplicity. In both cases, it prescribes to use a plural noun as the name
in the URI. A violation of this rule would be to use a singular noun for a collection or store
name instead.

Rule:
Violation:

GET /groups/{groupld}/members
GET /groups/{groupld}/member

VerbController A controller provides an action that cannot be easily mapped to a typical
CRUD operation on a resource. In relation to function names in source code, Massé (2011)
proposes to always use a verb or verb phrase for controller resources. Using a noun instead
would be a violation.

@ Springer

Empirical Software Engineering (2023) 28:132 Page9of35 132

Rule: POST /servers/{serverId}/backups/{backupId}/restore
Violation: POST /servers/{serverId}/backups/{backupId}/restoration

CRUDNames Based on the invoked HTTP method, a RESTful API selects the semantically
equivalent CRUD operation to perform. Therefore, Massé (2011) prescribes not to use CRUD
function names like “create” or “update” in URISs, especially not with incorrect HTTP verbs.
Adhering to this rule means solely relying on the HTTP verb to indicate the wanted CRUD
operation. Our chosen example also includes the rule “DELETE must be used to remove a
resource from its parent” (Massé, 2011) for the violation.

Rule: DELETE /messaging-topics/{topicId}/queues/{queueId}
Violation: GET /messaging-topics/{topicId}/delete-queue/{gueueld}

3.3.2 Hierarchy design

A prominent rule from Richardson and Ruby (2007) prescribes the use of path parameters
to encode the hierarchy of resources in a URI. Since there are several possibilities to apply
and interpret this, we created three specific rules based on this idea (PathHierarchyl to
PathHierarchy3).

PathHierarchy1 (path params vs. query params) Version 1 explores the difference between
using path parameters (rule) and query parameters (violation) for retrieving a hierarchically
structured resource.

Rule: GET /shops/{shopId}/products/{productId}
Violation: GET /shops/products?shopId={shopId}&productId={productId}

PathHierarchy2 (top-down vs. bottom-up) In version 2, the difference between structuring
the hierarchy top-down / from left to right (rule) and bottom-up / from right to left (violation)
is tested.

Rule: GET /companies/{companyId}/employees
Violation: GET /employees/companies/{companyId}

PathHierarchy3 (hierarchical path vs. short path) Lastly, version 3 analyzes differences
during the creation of a resource when either using a long hierarchical path with parameters
(rule) or a short path with parameters in the request body (violation).

Rule: POST /customers/{customerId}/environments/{environmentId}/ servers
Violation: ~ POST /servers

@ Springer

132 Page 100f35 Empirical Software Engineering (2023) 28:132

3.3.3 Request methods

In accordance with level 2 of the Richardson maturity model, Massé (2011) proposes several
rules that prescribe that each HTTP method should exclusively be used for its semantically
equivalent operation. We selected three of these rules for our experiment.

NoTunnel One of these rules states that GET and POST must not be used to tunnel other
request methods, which might seem tempting for the sake of simplicity. In our example, an
API correctly uses PUT to update a resource (rule), whereas the violation always uses POST
and tunnels the update operation via an additional query parameter.

Rule: PUT /trainings/{trainingId}/organizers/{organizerId}
Violation: POST /trainings/{trainingId}/organizers/{organizerId}?operation
=update

GETRetrieve Insimilar fashion, another rule from Massé (201 1) states that the HTTP method
GET must be used to retrieve a representation of a resource. Since GET requests have no
request body, it may seem tempting to use POST in some cases to be able to use a JSON
object instead of overly complex query parameters. A typical example of this is a search
resource. Adhering to the rule requires using GET plus query parameters, while reverting to
POST plus a request body with the search options is a violation.

Rule: GET /events?date=2022-10-03&category=music
Violation: POST /events/search

POSTCreate Lastly, we tested the complementary rule for POST, namely that this method
must be used to create resources in a collection (Massé, 2011). A typical violation of this
rule is the use of PUT to create a resource, as seen in our chosen example.

Rule: POST /customers/{customerId}/orders
Violation: PUT /customers/{customerId}/orders

3.3.4 HTTP status codes

Another important theme for RESTful API design is the correct usage of HTTP status codes
with response messages. Massé (2011) provides a number of rules in this area, from which
we selected three in total, namely the rules for 200 (OK), 401 (Unauthorized), and
415 (Unsupported Media Type).Contrary to the previous three categories, the two
versions of our used examples (rule and violation) do not differ in the displayed endpoint,
but only for the displayed response including the response code.

NoRC200Error The first rule in this category states that the response code 200 (OK) must
not be used in case of error. Instead, client-side (4XX) or server-side (5XX) error codes must
be used accordingly, based on the nature of the error.

@ Springer

Empirical Software Engineering (2023) 28:132 Page 110f35 132

Rule: A required parameter is missing in the request body. The server indicates there was a problem
and correctly responds with 400 (Bad Request).
Violation: A required parameter is missing in the request body. The server indicates there was a problem,

but incorrectly responds with 200 (OK).

RC401 A similar rule prescribes the use of the statuscode 401 (Unauthorized) incase
of issues with client credentials, e.g., during a login attempt. Using a different client-side
response code like 400 (Bad Request) or403 (Forbidden) should be avoided for
such errors. Since the nuances between 401 (not logged in or login failed) and 403 (logged-
in user does not have the required privileges) might not be fully clear to all participants, we
opted for the more generic code 400 (Bad Request) in the violation example.

Rule: A secured resource is accessed with an empty Bearer token in the Authorization header.
The server indicates there was a problem and correctly responds with 401 (Unauthorized).

Violation: A secured resource is accessed with an empty Bearer token in the Authorization header.
The server indicates there was a problem, but incorrectly responds with 400 (Bad Request).

RC415 The final rule in this category focuses on the correct usage of the status code 415
(Unsupported Media Type), which must be returned if the client uses a media type
for the request body that cannot be processed by the server. A typical example is a request
body in XML when the server only supports JSON. Returning a different client-side error
code, e.g., 400 (Bad Regquest), should be avoided in this case.

Rule: A request body contains XML, even though the server only accepts JSON. The server indicates
there was a problem and correctly responds with 415 (Unsupported Media Type).

Violation: A request body contains XML, even though the server only accepts JSON. The server indicates
there was a problem, but incorrectly responds with 400 (Bad Request).

3.4 Material

To incorporate the created API rule examples into our experiment, we relied on the OpenAPI
specification format’, one of the most popular ways to document Web APIs many practitioners
and researchers should be familiar with. Using the Swagger editor®, we created two OpenAPI
documents, one with the examples following the rules and one with the violation examples.
Each document contained 12 endpoints, one per rule. We then created screenshots of the
graphical representation of each resource, with the purpose of showing them to participants
with each task (see, e.g., Fig. 1).

To reach a larger and more diverse audience, we decided to conduct an online experiment
via a web-based tool. We selected the open-source survey tool LimeSurvey? for this purpose,
as it provides all the features we need. Additionally, we had access to an existing LimeSurvey

7 https://www.openapis.org
8 https://editor.swagger.io

9 https://www.limesurvey.org

@ Springer

https://www.openapis.org
https://editor.swagger.io
https://www.limesurvey.org

132 Page120f35 Empirical Software Engineering (2023) 28:132

instance via one of our universities. It supports several types of questions, is highly customiz-
able, and also allows measuring the duration per task, i.e., survey question, which we needed
for our experiment. Lastly, random assignment of participants to sequences is also possible.
This setup meant that participants exclusively used LimeSurvey for the experiment via a
computing device and web browser of their choice. All necessary information was provided
this way.

3.5 Tasks

The participants’ main task was to inspect and understand several Web API snippets that were
presented in the graphical representation of the Swagger editor. To evaluate understanding,
participants had to answer one comprehension question per snippet. Each of these questions
was a single choice question with five different options presented in a random order, with
exactly one of them being correct. The options were the same regardless of whether the version
adhering to the rule or the one violating the rule was displayed. Opting for single choice
comprehension questions had several advantages. While free-text answers might reflect a
more in-depth understanding of participants, they are much harder to correct. Additionally,
writing free-text answers takes more time and effort for participants, which may increase
the drop-out rate. Lastly, participants may specify answers with different level of details.
This not only complicates the grading, but it also influences the time to answer, which we
include in our comprehension measures. Depending on the shown snippet, exactly one of
three different types of comprehension questions was asked.

Return value: Participants had to determine the return value of an endpoint, i.e., the
type of entity and if a single object or a collection was returned. This question type was
used for snippets with GET requests, namely PluralNoun, PathHierarchyl, and
PathHierarchy2. An example is shown in Fig. 1.

Endpoint purpose: Participants had to determine the purpose of the shown endpoint, i.e.,
what operation or functionality was executed on invocation. This question type was used for
snippets which do not always return entities, e.g., POST, PUT, and DELETE requests, namely
VerbController, CRUDNames, PathHierarchy3, NoTunnel, GETRetrieve,
and POSTCreate. An example is presented in Fig. 2.

Response code reason: Participants had to determine why a certain request failed or what
the outcome of a request was. This question type was exclusively used for snippets of the
category HTTP Status Codes, namely NoRC200Error, RC401, and RC415. An example
is presented in Fig. 3.

After each comprehension question, participants also had to rate the perceived difficulty
of understanding the API snippet on a 5-point ordinal scale, ranging from very easy (1) to
very hard (5). For this purpose, the last snippet was shown again, so participants did not have
to rely solely on memory.

3.6 Variables and hypotheses

Two dependent variables were used in this experiment. For RQ1, we needed a metric for
understandability. To operationalize this quality attribute, we collected both the correctness
and duration for each task per participant. Since every task had a single correct answer,
correctness was a binary variable, with O for false and 1 for correct. The required duration
per task was documented in seconds. To combine these two measures into a single variable,
we adapted an aggregation procedure from Scalabrino et al. (2021), namely Timed Actual

@ Springer

Empirical Software Engineering (2023) 28:132 Page 130f35 132

*|
/servers/{serverId}/backups/(backupid}/restore * /servers/{serverId}/backups/{backupId}/restoration
Parameters Parameters
Name Description Name. Description
serverld * serverld *
string string
(path) (path)
backupld * backupld *
— . string
(outh) (path)

What is the purpose of this endpoint? What is the purpose of this endpoint?

@ Choose one of the following answers O Choose one of the following answers

- @ Restor: ifi for ific server
Create a new backup for a specific server estore a specific backup for a specific serve

Fetch the restoration history for a specific server and backup Create a new backup for a specific server

Create a new server with a specific backup Fetch the restoration history for a specific server and backup

i i -
@ Restore a specific backup for a specific server Modify a specific backup for a specific server

Modify a specific backup for a specific server Create anew server with a specific backup

Fig. 2 Example of an endpoint purpose question based on the rule VerbController (rule on the left,
violation on the right, correct answer is checked)

Understandability (TAU). In our experiment, TAU for a participant p and task ¢ was calculated

as follows: .
durationp

ey

TAU,; = correctness,; x (1 - ————
b p: max(durations;)

TAU produces values between 0 and 1, with values closer to 1 indicating a higher degree of
understandability. For an incorrect answer, TAU is always 0. For a correct answer, the task
duration is set in relation to the maximum duration that was recorded for this task. This is
then inverted by subtracting it from 1, meaning the faster the correct answer was found, the
greater is TAU. As such, TAU represents a pragmatic aggregation of correctness and duration
that respects differences between participants in the sample and leads to easily interpretable
values. Even though it leads to unusual distributions (see, e.g., Fig. 8), we therefore chose
TAU as the dependent variable for RQ1. For RQ2, the dependent variable was the perceived
difficulty, i.e., the rating that participants had to give after each task using a 5-point ordinal
scale, ranging from very easy (1) to very hard (5).

As the directly controlled independent variable, we used the version number of the
respective snippet. This was either version 1 (rule) that followed the rule or version 2 (vio-
lation) that violated the rule. Additionally, we had uncontrollable independent variables that
we collected for RQ3, namely various demographic attributes of participants such as their
current role, years of experience with REST, or knowledge of the Richardson maturity model.

Based on these variables, we formulated hypotheses for the confirmatory questions RQ1
(difference in actual understandability between rule and violation) and RQ2 (difference in
perceived understandability). They are displayed in Table 3. In both cases, we expected that
the version following the design rule would lead to significantly better results in comparison
to the version violating the rule. While we only list two hypotheses, each of the 12 rules was
tested individually to clearly identify which rules have an impact and which do not. Finally,
the exploratory RQ3 did not have a clear hypothesis.

@ Springer

132 Page 140f 35

Empirical Software Engineering (2023) 28:132

*You send a request to the following API:

*You send a request to the following API:

m /live-streams/{liveStreamId}

Parameters

Name Description

liveStreamid * r=avi=d

string

liveStreamid

(path)

ﬂ /live-streams/{liveStreamId}

Parameters

Name Description

liveStreamid * =avi=d
string

(path)

liveStreamid

The header of your request looks like this:

GET /live-streams/123456 HTTP/1.1
Host: ws.api.video

Accept: application/json
Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8
Authorization: Bearer ""
Keep-Alive: 300

Connection: keep-alive
Cache-Control: no-cache

The server responds with the following message:
401 - Unauthorized

What was the reason for the failed request?

@ Choose one of the following answers
The request body is malformed
@ The bearer token is empty
An error on the server side
The location of the resource has changed

No permission for accessing the specified live stream

The header of your request looks like this:

GET /live-streams/123456 HTTP/1.1
Host: ws.api.video

Accept: application/json
Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8
Authorization: Bearer "*
Keep-Alive: 300

Connection: keep-alive
Cache-Control: no-cache

The server responds with the following message:
400 - Bad Request: There was a problem with your request

What was the reason for the failed request?
@ Choose one of the following answers
@ The bearer token is empty
The request body is malformed
The location of the resource has changed
No permission for accessing the specified live stream

An error on the server side

Fig. 3 Example of a response code reason question based on the rule RC401 (rule on the left, violation on

the right, correct answer is checked)

Table 3 Null hypotheses with their alternatives for the two confirmatory RQs

RQ Metric

Null Hypothesis

Alternative Hypothesis

Timed actual
understand-
ability (TAU)

RQI

RQ2 Perceived difficulty

H(l): Web API snippets adhering
to design rules are equally or
less understandable than
snippets violating rules.

H(z): Web API snippets adhering
to design rules are rated as
equally or more difficult to
understand than snippets
violating rules.

Hi: Web API snippets adhering
to design rules are more
understandable than snippets
violating rules.

H%: ‘Web API snippets adhering
to design rules are rated as less
difficult to understand than
snippets violating rules.

@ Springer

Empirical Software Engineering (2023) 28:132 Page 150f35 132

3.7 Experiment design

We opted for a mixed experiment design that can be described as a hybrid between a crossover
design (Vegas et al., 2016) and a between-subjects design (Wohlin et al., 2012), thereby
exploiting specific benefits of both. In a crossover design (a special form of a within-subjects
design), each participant receives each treatment at least once, but the order in which par-
ticipants receive the treatments differs. Our participants worked on six tasks with the rule
version and six tasks with violation. However, in typical crossover experiments in software
engineering, each participant applies all treatments to a given experiment object (Wohlin
etal., 2012), which was not the case for our experiment. Only half of our participants worked
on each version of a specific task, which is the between-subject characteristic of our experi-
ment. This mixed design is still fairly robust regarding inter-participant differences because
participants are not assigned to a single treatment. Letting each participant work on both
treatments for the same rule would be even more robust, but would also create problems with
familiarization effects. It also would increase the experiment duration considerably, leading
to fewer participants and higher mortality or fewer rules that could be tested. Lastly, this
design still provides us with many observations to overall compare rule vs. violation.

To avoid suboptimal task orderings regarding treatments or task categories that could cause
carryover or order effects, we did not randomize the order of tasks. Instead, we consciously
designed two sequences with counterbalanced task orders (see Table 4), which is common
for crossover designs (Vegas et al., 2016). Our goals were to spread out the tasks of the same
category, to ensure the same number of rule and violation tasks, to avoid having the
same treatment too often in a row, and to ensure that rule and violation for the same
snippet appear at the same position per sequence. Participants were randomly assigned to
one of these sequences at the start of the experiment.

This experiment design was the result of several iterations with internal discussion, fol-
lowed by a pilot with external reviewers. Based on the pilot results, we refined the tasks and

Table 4 Task orders for the two experiment sequences

Rule Category Sequence 1 Sequence 2
1 VerbController URI Design violation rule

2 RC415 HTTP Status Codes violation rule

3 PathHierarchy?2 Hierarchy Design rule violation
4 GETRetrieve Request Methods violation rule

5 PathHierarchy3 Hierarchy Design rule violation
6 NoRC200Error HTTP Status Codes violation rule

7 NoTunnel Request Methods rule violation
8 PluralNoun URI Design rule violation
9 POSTCreate Request Methods violation rule

10 PathHierarchyl Hierarchy Design violation rule

11 CRUDNames URI Design rule violation
12 RC401 HTTP Status Codes rule violation

@ Springer

132 Page 16 of 35 Empirical Software Engineering (2023) 28:132

|/cars/{carld}/extras/{extrald} 2 |

Parameters
Name Description
carld * required

carld
string
(path) 3
extrald * required

extrald
string
(path)

Fig.4 Example APIsnippet from the introduction page, explanations were provided for the numbered elements

survey text. Furthermore, we removed a few previously planned tasks to keep the required
participation time below 15 minutes, leading to the total of 12 tasks.

3.8 Experiment execution

Participation in the online experiment via LimeSurvey was open for a period of approximately
three weeks. At the start of and during this period, we actively promoted the experiment
URL within in our network. Participants starting the experiment were first presented with a
welcome page containing some general information about the study. We explained that our
goal with this survey was to investigate the understandability of different Web API designs,
and that basic REST knowledge was the only requirement for participation. We mentioned
that the experiment should take between 10-15 minutes and should ideally be finished in
one sitting. For each of the first 100 participants, we pledged to donate 1 € to UNICEF! as
additional motivation.

Afterward, we described the tasks, namely that we will present 12 different API snippets.
For each snippet, they have to answer a multiple-choice question with five different options,
e.g., “What is the purpose of this endpoint?”. We would measure the time it takes to answer,
but answering correctly would be more important. After each comprehension question, they
would rate how difficult it was to understand the API snippet without time measurements.
Finally, there would be a few demographic questions. To familiarize participants with the used
API snippet visualization, we also presented an example snippet with additional explanations
about the different elements (see Fig. 4).

The last part of the welcome page contained our privacy policy. We explained what data
would be requested and that data would be used for statistical analysis and possibly be
included in scientific publications. Additionally, we emphasized that participation was strictly

10 https://www.unicef.org

@ Springer

https://www.unicef.org

Empirical Software Engineering (2023) 28:132 Page 17 0of35 132

voluntary and anonymous, and that participants could choose to abandon the experiment at
any time, resulting in the deletion of the previously entered data. Participants had to consent
to these terms before being able to start the experiment.

Upon accepting our privacy policy, participants started working on the tasks of their
randomly assigned sequence (see Table 4). For each of the 12 tasks, participants first analyzed
the presented API snippet and answered the comprehension question. Afterward, participants
had to rate the difficulty of understanding the studied API snippet. The snippet was displayed
again for this purpose. For the experiment part, participants answered a total of 24 questions,
one comprehension and one rating question for each task.

Finally, participants answered the demographic questions, namely their country of origin,
current role, technical API perspective (either API user / client developer, API developer /
designer, or both), years of professional experience with REST, knowledge of the Richardson
maturity model, and (if they knew about the model) their opinion about the minimal required
maturity level a Web API should possess to be considered RESTful. We also provided an
optional free-text field for any final remarks or feedback participants wanted to give. Finally,
an outro page was presented, where we thanked participants and kindly asked them to forward
the experiment URL to suitable colleagues.

3.9 Experiment analysis

To analyze the experiment results, we first exported all responses as a CSV file. We then
performed the following data cleaning and transformation steps:

— Removing 48 incomplete responses, i.e., participants that aborted the experiment at some
point (rationale: avoid including responses without demographics, participants not fully
committed, or participants who realized themselves that their background was not suit-
able)

— Resolving and harmonizing free-text answers for current role and technical API perspec-
tive (“Other:”)

— Harmonizing country names

— Adding binary variables (1 or 0) for is_Student, is_Academia (an academic
professional), and is_Germany; if both is_Student and is_Academia were 0,
the participant was an industry practitioner

No substantial ambiguity was identified during the harmonization, and no final participant
comments had to be considered for adapting the assigned correctness score. However, since
TAU is sensitive to outliers of the measured duration, we also analyzed the durations for all
comprehension questions. If answering the question took less than 5 seconds or more than 3
minutes, we judged this as invalid and removed the individual answer for all three dependent
variables (correctness, time, and subjective rating). The rationale for this was that we did
not want to consider any responses (not even the subjective rating) where it was very likely
that the participant had not concentrated fully on the task, e.g., by answering before reading
everything or leaving the experiment for more than a few seconds to do something else. Since
questions of the type HTTP Status Codes were more verbose, the allocated thresholds for
these questions were 10 seconds and 4 minutes. If these duration thresholds were triggered
three or more times for the same participant, we removed their complete response instead
of only the individual answers. Due to this filtering, 2 complete responses (initially, we had
107 complete responses) and 12 individual answers were removed. The number of valid
responses considered in the analysis is displayed for each individual task and treatment in
Table 5.

@ Springer

132 Page 180f 35 Empirical Software Engineering (2023) 28:132

Table 5 Number of valid responses per individual task and treatment

Rule # of responses for rule # of responses for violation
1 VerbController 53 52
2 RC415 53 52
3 PathHierarchy?2 52 53
4 GETRetrieve 53 52
5 PathHierarchy3 52 52
6 NoRC200Error 53 50
7 NoTunnel 50 52
8 PluralNoun 52 52
9 POSTCreate 53 51
10 PathHierarchyl 53 50
11 CRUDNames 51 53
12 RC401 51 53

The cleaned CSV file was then imported by an analysis script written in R'!, which had also
been tested and refined during the pilot study. The script performs basic data transformation,
calculates TAU, and provides general descriptive statistics as well as diagrams to visualize
the data, such as box plots. To select a suitable hypothesis test for RQ1 and RQ2, we first
analyzed the data distributions with the Shapiro-Wilk test (Shapiro and Wilk, 1965). For both
dependent variables, the test resulted in a p-value < 0.05, i.e., the data did not follow a normal
distribution, which called for a test without the assumption of normality. We therefore opted
for the non-parametric Wilcoxon-Mann-Whitney test (Neuhéuser, 2011), which has a mature
R implementation in the stats package!2. To combat the multiple comparison problem (in
our case, the testing of 12 rules), we applied the Holm-Bonferroni correction (Shaffer, 1995).
We used the p.adjust () function from the stats package'® to adjust the computed p-
values. When an adjusted p-value was less than our targeted significance level of 0.05, we
rejected the null hypothesis and accepted the alternative. To judge the effect size of accepted
hypotheses, we additionally calculated Cohen’s d (Cohen, 1988) using the effectsize
package'*. Following Sawilowsky (2009), the values can be interpreted as follows:

— d < 0.2: very small effect

- 0.2 <d < 0.5: small effect

- 0.5 <d < 0.8: medium effect
— 0.8 <d < 1.2: large effect

— 1.2 <d < 2.0: very large effect
— d > 2.0: huge effect

For the exploratory RQ3, we first used a correlation matrix for visual exploration. Corre-
lations of identified variable pairs were then further analyzed with Kendall’s Tau (Kendall,
1938), as it is more robust and permissive regarding assumptions about the data than other

1 https://www.r-project.org
12 https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test
13 hitps://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/p.adjust

14 https://www.rdocumentation.org/packages/effectsize/versions/0.8.2

@ Springer

https://www.r-project.org
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/p.adjust
https://www.rdocumentation.org/packages/effectsize/versions/0.8.2

Empirical Software Engineering (2023) 28:132 Page 190f35 132

Table 6 Participant demographics by sequence (RMM: Richardson Maturity Model)

Sequence # REST exp. in # of industry # of academic #of # with RMM
years (median) participants participants students knowledge

1 52 35 31 (60%) 9 (17%) 12(23%) 9 (17%)

2 53 4 28 (53%) 9 (17%) 16 (30%) 19 (36%)

Total 105 4 59 (56%) 18 (17%) 28 27%) 28 (27%)

methods. Lastly, we used linear regression'” to further analyze combined effects of demo-
graphic attributes and to explore the potential for predictive modelling.

4 Results and discussion

In this section, we first present some general statistics about our participants. Afterward, we
provide the results for each RQ, starting with descriptive statistics and then presenting the
hypothesis testing or correlation results.

4.1 Participant demographics

After the cleaning procedure, we were left with 105 valid responses, which is more than
most software engineering experiments have.'® 96 of these were complete, while we had
to exclude one or two answers for 9 of them. 52 participants were randomly assigned to
sequence 1 and 53 to sequence 2. Table 6 compares the attributes for the two sequences,
which are pretty similar in most cases. Overall, our 105 participants had between 1 and 15
years of experience with REST, with a median of 4 years. 59 participants were from industry
(56%), 18 were professionals from academia (17%), and 28 were students (27%).

Most of our participants, namely 70 of 105 (67%), were located in Germany, followed by
Portugal (12), the US (6), and Switzerland (5). The remaining 12 responses were distributed
across 7 countries with between 1 and 3 participants. Regarding the roles of the 59 industry
participants, the majority of them were software engineers (41). Eight were consultants, two
were software architects, and two were team managers. The remaining six each had a role
that was only mentioned once, e.g., test engineer. Concerning the technical API perspective,
most participants reported to be both active in API development and usage (76), while 16
exclusively were API users / client developers, 8 exclusively were API developers, and 5
did not provide an answer to this optional question. Interestingly, only 28 participants (27%)
reported knowing the Richardson maturity model. When these 28 were then asked their
opinion about the minimal maturity level that a Web API should have to be RESTful, 22
chose level 2 (79%) and 6 level 3 (21%). No one selected level O and 1. This may be an
indication that the Richardson maturity model is not very well known and that HATEOAS is
not perceived as an important requirement for RESTfulness by most professionals. Especially
the latter is in line with previous findings (Kotstein and Bogner, 2021).

15 https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/Im

16 See, e. ., the mapping study on code comprehension experiments by Wyrich et al. (2022): median number
of participants was 34 (for journals alone, it was 61)

@ Springer

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/lm

132 Page 200of 35 Empirical Software Engineering (2023) 28:132

4.2 Impact on understandability (RQ1)

For our central research question, we wanted to analyze which design rules have a significant
impact on understandability, as measured via comprehension tasks and TAU. We visualize
the results for the percentage of correct answers (Fig. 5), the required time to answer (Fig. 6),
and TAU (Fig. 7) per individual rule and treatment. For a more detailed comparison, Tables 8§,
9, and 10 in the appendix list the descriptive statistics for this per task.

For 11 of the 12 tasks, participants with the rule version performed better than par-
ticipants with the violation version, i.e., mean TAU was higher for rule. Correctness was
often the deciding factor, e.g., for the tasks CRUDNames (96% vs. 38%), GETRetrieve
(100% vs. 60%), or NoRC200Error (98% vs. 58%). In other cases, correctness was much
closer between the two treatments, but participants with violation required more time. This
is, e.g., visible for the tasks PluralNoun (100% vs. 94%, but 20.82 s vs. 32.23 s) or
RC401 (75% vs. 710%, but 43.42 s vs. 67.21 s). The only surprising exception was the task
PathHierarchy3, where participants with violation performed notably better (mean TAU
of 0.6141 vs. 0.7505).

To further visualize the experiment performance, we created strip plots of TAU for all
rules, which makes it easier to understand its unusual distribution and to compare the two
treatments. Figure 8 shows the TAU distributions for the rules in the categories URI Design
and Hierarchy Design. Incorrect answers are displayed as dots at the bottom (TAU = 0),
with the median value being displayed as an orange diamond. For all three URI Design
tasks (1-3), it immediately becomes apparent that violation (red) performed worse, i.e., the
median of violation is below rule in all cases. This difference is especially large for the task
CRUDNames, which constitutes the worst performance for violation. Additionally, the values
are more spread out for violation in all three tasks.

B rule M violation

94%

PluralNoun 100%

73%
VerbController 94%

38%
CRUDNames ° 96%

_ 80%
PathHierarchy1 98%

. 83%
PathHierarchy2 100%

PathHierarchy3 3% 96%

Rule

54%
NoTunnel 66%

;
GETRetrieve 60% 100%

POSTCreate 57% 98%

58%
NoRC200Error 98%

70%
RC401 z 75%

RC415 L

0% 25% 50% 75% 100%
Correct answers

Fig.5 Comparison of correctness between treatments rule and violation (higher is better)

@ Springer

Empirical Software Engineering (2023) 28:1

32 Page 21 0f35 132

PluralNoun

VerbController

CRUDNames

PathHierarchy1

PathHierarchy2

PathHierarchy3

Rule

NoTunnel

GETRetrieve

POSTCreate

NoRC200Error

RC401

RC415

Il rule H violation

32.2
20.8

45.2
33.1

41.6
27.1

44.2
22.9

46.6
23.6

37.5
42.7

44.8

45.3
28.4

43.9
25.0

58.4
41.4

67.2
43.4

58.0
50.1

20

40
Mean time to answer in seconds

60

Fig.6 Comparison of duration between treatments rule and violation (lower is better)

PluralNoun
VerbController
CRUDNames 0.20
PathHierarchy1

PathHierarchy2

PathHierarchy3

Rule

NoTunnel

GETRetrieve

POSTCreate

NoRC200Error

RC401

RC415

I rule @ violation

0.70
0.84

0.53
0.76

0.74

0.57
0.85

0.49
0.79

0.75
0.61

0.34
0.48

0.43
0.81

0.42
0.84

0.38
0.73

0.52
0.61

0.70
0.77

0.00

0.25

0.50
Mean TAU

0.75

Fig.7 Comparison of TAU between treatments rule and violation (higher is better)

@ Springer

132 Page220f35 Empirical Software Engineering (2023) 28:132

#1: PluralNoun | | #2: VerbController | | #3: CRUDNames | | #4: PathHierarchy1 | | #5: PathHierarchy2 ‘ | #6: PathHierarchy3 ‘
1.00 .
;',:,‘,) Wi 75 - Fee *“'; o . o o P e 8
b o0y s % o, g I, O & o o° Y -}
A LI AU 2R o TY oan Gk - 5 A 4
075{ ®%° (. I KA e . Y N gl R
) s eeid (R . . D . L
si "e . ¢ <. . . o o ot o .o
= ..-: = . ¢ % w -~ Cee e N L
2 .o . . * o .
< 0.50 o . . .- .
= . . 3 J s o
. o : . &
0.25 .t .
0.00 coee e o ce = . ox 2 . o - o ome =

Rule Violation Rule Violation Rule Violation Rule Violation Rule Violation Rule Violation
Treatment

Fig.8 TAU distributions for the categories URI Design (1-3) and Hierarchy Design (4-6), median values are
displayed as orange diamonds

For the rules of the Hierarchy Design category (4-6), we see a similarly improved per-
formance for rule in the case of PathHierarchyl and PathHierachy2. However, the
exception is PathHierarchy3, which shows a visibly better performance and less spread
for violation. A potential explanation could be that the general difference in path length might
have been the deciding factor,i.e., POST /customers/{customerId}/environmen
ts/{environmentId}/servers vs. the much simpler violation POST /servers.
Even though following the rule provides richer details about the resource hierarchies (“there
are customers, who have IT environments like Production, in which servers are placed”),
it seems to make the endpoint purpose more difficult to understand, in this case that a new
server is created. Additionally, from the five response options, three were about creating a
new resource, which fits to the POST of the shown endpoint. However, it was probably clearer
to exclude the options “Create multiple new servers...” and “Create an environment...” for
violation, as “environment” did not occur in the path. The needed time was not that different
(42.69 s vs. 37.51 s), but only 83% answered correctly for rule, while 96% did the same
for violation. Extrapolating from the other PathHierarchy rules (1 and 2), we might
state that using a path hierarchy correctly, i.e., from left to right with sequential pairs of
{collectionName}/{id},is significantly better than using it incorrectly, but not auto-
matically better than not using it at all. However, more research is needed to confirm this,
e.g., by analyzing other variants of PathHierarchy3, e.g., with GET instead of POST,
and identifying potential thresholds below which the path length might become irrelevant.

Figure 9 presents the TAU distributions for the categories Request Methods and HTTP
Status Codes. For Request Methods (7-9), the rule version shows again better performance
in all three tasks, with substantial distance between treatment medians. However, in the
NoTunnel task, the spread of TAU values is more similar between rule and treatment than
for other tasks. Overall, NoTunnel was the worst performance for rule, with only 66%
answering it correctly. One explanation may be that several practitioners may not see it as a
violation to use PUT to create a new resource.

In the final HTTP Status Codes category (10-12), the performance of rule is also better
in all three cases, however, to varying degrees. For NoRC200Error, the differences are
substantial, but for RC401 and especially RC415, the median values are not as far apart. In
the case of RC401, the spread in TAU values is also much more similar between the two
treatments. This was the second-worst performance for rule, with only 75% providing the
correct answer.

@ Springer

Empirical Software Engineering (2023) 28:132 Page 230f35 132

#7:NoTunnel || #8: GETRetrieve | [#9: POSTCreate | [#10: NoRC200Error || #11: RC401 [m2:Rca1s |
1.00
®ee . % . . - M
o, * X3 .
s . :‘.};.' EX I - % A I v S
. 3 Sea & S o 7Y & e, L. B
o ° -, So o0 s en %o 13 X ot nd &e %
0751 .5 - e o . oble ey - . o e .
. . .
i BRI o el . o .-
’ . ot
200 o . & * . @t : < e .
[i ® 5 . ° .
. ’ . : ’
025 o« ® LA o o
. .
. .
0.00 asee ———— e cneem - PR -enm ccm e —a .

Rule Violation Rule Violation Rule Violation Rule Violation Rule Violation Rule Violation
Treatment

Fig. 9 TAU distributions for the categories Request Methods and HTTP Status Codes, median values are
displayed as orange diamonds

To verity if the visually identified differences between rule and violation were statistically
significant, we continued with hypothesis testing. Despite the applied Holm-Bonferroni cor-
rection, 11 of our 12 hypothesis tests produced significant results, i.e., 11 of 12 rules had
significant impact on understandability. The only outlier was PathHierarchy3, where
violation had performed better. Additionally, we calculated the effect size for the significant
tests via Cohen’s d. We visualize the d values in Fig. 10. For a more detailed comparison of
the test results, please refer to Table 11 in the appendix.

The rules NoTunnel, RC401, and RC415 produced a small effect (0.2 < d < 0.5)
and PluralNoun and VerbController a medium one (0.5 < d < 0.8). The remain-
ing six rules showed even stronger effects, namely a large one for PathHierarchyl
(0.8 < d < 1.2), avery large one for NoRC200Error, GETRetrieve, POSTCreate,
and PathHierarchy?2 (1.2 < d < 2.0), and even a huge one for CRUDNames (d > 2.0).
It is difficult to determine the most impactful category of rules, as the six rules with a Cohen’s
d > 1.0 cover all four categories. For URI Design, violating CRUDNames had by far the
largesteffect (d = 2.17),but VerbController (d = 0.75)and PluralNoun (d = 0.72)
were in the bottom half. The categories Request Methods and Hierarchy Design also had
two impactful rules, but NoTunnel produced only a small effect and PathHierarchy3

CRUDNames

PathHierarchy2

NoRC200Error

Rule

PathHierarchy1

VerbController

PluralNoun

NoTunnel

0.0 0.5 1.0 1.5 2.0
Cohen's d

Fig. 10 Effect sizes for the 11 significant differences between TAU for treatments rule and violation, ordered
by Cohen’s d, insignificant PathHierarchy3 not included

@ Springer

132 Page24of 35 Empirical Software Engineering (2023) 28:132

none at all. Lastly, HTTP Status Codes was the least impactful category. Even though
NoRC200Error had a Cohen’s d = 1.25, both RC401 and RC415 resulted in small
effects.

Results for RQ1: For 11 of the 12 tasks (PathHierarchy3 being the
exception), adhering to the design rule resulted in significantly better
comprehension performance. Effect sizes were between 0.24 and 2.17,
with 6 rules resulting in a Cohen’s d > 1.0 (large up to huge effects).
Violating the rules CRUDNames, PathHierarchy2, and POSTCreate had
the strongest negative impact on understandability.

4.3 Impact on perceived difficulty (RQ2)

After showing that the majority of design rules led to significantly better comprehension
performance, we analyzed if the results were similar for the subjective perceived under-
standability. Table 7 summarizes the results for the perceived difficulty ratings and sets them
in relation to the corresponding TAU values. The mean difficulty rating is lower for rule in
all 12 tasks, while the median difficulty rating is only lower for 10, the exceptions being
RC415 and again PathHierarchy3 (median rating of 2 for both treatments). In four
tasks, namely VerbController, CRUDNames, GETRetrieve, and NoORC200Error,
the difference in median rating is 1 point, while it is even higher for the remaining six tasks
(between 1.5 and 3 points). To further analyze differences, we visualized the results with a
comparative bar plot of the ratings 1 (very easy) and 2 (easy) in Fig. 11. For a full Likert plot,
please refer to Fig. 14 in the appendix.

The difference between rule and violation becomes apparent for many of the tasks here,
e.g., for CRUDNames, PathHierarchyl, PathHierarchy?2, and RC401. However,
in some tasks, the treatment ratings also appear to be decently close to each other, despite

Table 7 Descriptive statistics for RQ2, perceived difficulty rating ranging from 1 (very easy) to 5 (very
difficult), mean TAU provided for comparison

Task Median difficulty Mean difficulty Mean TAU
rule violation rule violation rule violation

PluralNoun 1 2.5 1.25 2.40 0.8369 0.7046
VerbController 2 3 2.13 2.50 0.7617 0.5345
CRUDNames 2 3 1.73 3.36 0.7392 0.1982
PathHierarchyl 1 3 1.34 2.94 0.8457 0.5678
PathHierarchy2 1 4 1.23 3.36 0.7916 0.4913
PathHierarchy3 2 2 2.31 2.42 0.6141 0.7505
NoTunnel 2 4 2.34 3.27 0.4820 0.3396
GETRetrieve 2 3 1.83 2.77 0.8095 0.4337
POSTCreate 1 3 1.45 2.75 0.8427 0.4201
NoRC200Error 2 3 1.75 2.80 0.7268 0.3776
RC401 2 4 1.80 3.45 0.6058 0.5170
RC415 2 2 2.00 2.35 0.7654 0.7044

@ Springer

Empirical Software Engineering (2023) 28:132 Page 250f35 132

Il Very easy (rule) - Easy (rule) [ll Very easy (violation)] Easy (violation)

PluralNoun
VerbController
CRUDNames
PathHierarchy1
PathHierarchy2

2 pathHierarchy3
r.\:: NoTunnel
GETRetrieve
POSTCreate
NoRC200Error
RC401

RC415

50 40 30 20 10 0 10 20 30 40 50
of ratings per difficulty level

Fig. 11 Bar plots of perceived difficulty (RQ2) for the ratings 1 (very easy) and 2 (easy), rule ratings on the
left, violation ratings on the right

the median rating being different, e.g., for VerbController or GETRetrieve. In gen-
eral, the violations perceived as the least difficult to understand were PathHierarchys3,
RC415, and PluralNoun.

To confirm if the differences between rule and violation are significant, we again applied
hypothesis testing. This time, we only found significant differences for 9 of the 12 tasks
in the perception of rule and violation. In addition to PathHierarchy3 and RC415
with equal medians, the difference between treatments for VerbController was also not
significant. We visualize the values for Cohen’s d in Fig. 12. For a more detailed comparison,
please refer to Table 12 in the appendix. The effect sizes for the significant tasks ranged from
0.79 (medium) to 2.06 (huge), with 8 rules producing a Cohen’s d > 0.8 (large and higher).
Violating the rules PathHierarchy?2, RC401, PathHierarchyl, and CRUDNames
had the strongest impact on difficulty perception.

Especially for PathHierarchy2 with Cohen’s d = 2.06 (huge), we see that the
constructed URI for violation (GET /employees/companies/{companyId}) was
a very extreme case leading to much confusion. Mixing the URI path segments in this
way seems to have made it much more difficult for participants to identify the cardinal-
ities of the original domain model (all employees belonging to a specific company). For
PathHierachy3, the missing effect was to be expected and complementary to the insignif-

PathHierarchy2 2.06

RC401

PathHierarchy1

CRUDNames

POSTCreate

Rule

PluralNoun

NoRC200Error

GETRetrieve

NoTunnel

0.0 0.5 1.0 1.5 2.0
Cohen's d

Fig. 12 Effect sizes for the 9 significant differences between perceived difficulty for treatments rule and
violation, ordered by Cohen’s d, insignificant PathHierarchy3, RC415, and VerbController not
included

@ Springer

132 Page 26 of 35 Empirical Software Engineering (2023) 28:132

icant results for TAU. However, VerbController and RC415 are not as easy to explain,
as both of them had a significant impact on the actual understandability. While violation was
perceived as slightly more difficult than rule in both tasks, this difference was not statistically
significant. For RC415, this might be explained by the fairly small effect size for the TAU
difference (d = 0.28) and the similar levels of correctness per treatment. If participants only
needed a bit more time but were still fairly certain to have found the correct answer, they
might not have directly associated this task with a high difficulty. For VverbController,
however, this explanation is not applicable, as both correctness and time differed per treat-
ment, and it produced a medium effect (d = 0.75). This makes it an especially dangerous
rule to violate because it has considerable impact, but many people might not notice that
something is ambiguous or unclear with the endpoint.

Other rule violations that may be especially critical can be identified by analyzing the
correlations between TAU and perceived difficulty for the violation treatment. Ideally, we
would like to have significant negative correlations between the two dependent variables for
all violation API snippets, i.e., the worse the comprehension performance of a rule violation,
the higher the perceived difficulty ratings should be. Rule violations where this is not the
case may indicate that participants felt confident in their performance despite answering
incorrectly or slowly because they unknowingly misunderstood the API snippet. For nine
tasks, there was no significant negative correlation between TAU and perceived difficulty,
the exceptions being PathHierarchy3, VerbController, and GETRetrieve. For
the detailed correlation results, please refer to Table 13 in the appendix. As a measure of
explanatory power, we visualize the adjusted R? values for the regression between TAU and
the perceived difficulty ratings for all violation API snippets in Fig. 13. For many of them,
the values are close to zero, meaning that the perceived difficulty ratings cannot explain any
variation in TAU. Among them are also rule violations that have a substantial impact on
understandability, like CRUDNames, PathHierarchy?2, or POSTCreate, which makes
these rule violations especially problematic.

GETRetrieve
PathHierarchy3
RC415

VerbController

NoTunnel
o PathHierarchy2 0.04
é PluralNoun - 0.02
CRUDNames . 0.02
RC401 Woo:
NoRC200Error . 0.01

POSTCreate{ -0.02 -

PathHierarchy1{ -0.02 [
00

0.1 0.2 0.3 0.4
Adjusted R-squared

Fig. 13 Adjusted R? values for the regression between TAU and perceived difficulty ratings for violation,
ordered by adjusted R2, higher is better

@ Springer

Empirical Software Engineering (2023) 28:132 Page 27 of 35 132

Results for RQ2: For 9 of the 12 tasks (except for PathHierarchy3,
RC415, and VerbController), adhering to the API design rule resulted
in significantly smaller perceived difficulty ratings than violating it.
Effect sizes were between 0.79 and 2.06, with 6 rules resulting in a
Cohen’s d > 1.0 (large up to huge effects). Additionally, there was no
significant relationship between perceived difficulty and TAU for many
violation tasks, making these rule violations especially dangerous.

4.4 Relationships with demographic attributes (RQ3)

For RQ3, we analyzed if there were any relationships between the dependent variables
(TAU and the perceived difficulty ratings) and demographic attributes of our participants.
We explored this question separately for each treatment (rule and violation), and compared
the results. Studied predictors were being from Germany, being from academia (vs. indus-
try), being a student, being an API developer / designer, years of professional experience
with REST, having knowledge of the Richardson maturity model, and the preferred minimal
maturity level. Even though this was an exploratory RQ, we used Holm-Bonferroni adjusted
p-values and a significance level of « = 0.05.

Overall, we did not find many significant relationships, and no strong ones at all. Years
of experience with REST had a small positive correlation with TAU for rule (Kendall’s
T = 0.1956, p = 0.0311), i.e., for the API snippets adhering to the rules, participants with
more experience had a slight tendency to perform better. However, this was not the case for
API snippets violating the rules. Similarly, participants knowing the Richardson maturity
model also tended to perform slightly better for rule, with a Kendall’s T = 0.1941. However,
after adjusting the original p-value (p = 0.0158), this correlation was no longer signifi-
cant (p = 0.0791). The deciding factor here should be years of experience, though, as it
was also positively correlated with knowing the Richardson maturity model in our sample
(Kendall’s T = 0.3760, p < 0.001). Conversely, knowledge of the Richardson maturity
model was also positively correlated with the perceived difficulty ratings for violation, i.e.,
if participants knew about this model, they tended to rate the API snippets violating the rules
as slightly more difficult to understand (Kendall’s t = 0.3035, p = 0.0014). This corre-
lation was absent for rule. All other demographic attributes did not produce any significant
relationships.

While the identified correlations were small, they still seem to highlight differences
between the two treatments that may provide an explanation. Experience and knowledge
about REST is only linked to better experiment performance if no design rules are violated.
If rules are violated, it does not matter much if people are more experienced: their perfor-
mance still suffers. However, people who know advanced REST-related concepts are at least
more likely to notice that something is wrong with the rule-violating API snippets, even
though this does not help to understand them better. This theory also seems to be supported
by our results of trying to build linear regression models to predict TAU per treatment based
on the demographic attributes. While both models (rule and violation) were unable to pro-
vide reliable predictions for the majority of our sample, the model for violation performed
considerably worse. The model for rule was able to explain a decent percentage of variability
(adjusted R? = 0.2171, p = 0.0618), while the one for violation had no explanatory power
at all (adjusted R? = —0.1792, p = 0.9674).

@ Springer

132 Page280f35 Empirical Software Engineering (2023) 28:132

Results for RQ3: Participants with more REST-related experience
and knowledge of the Richardson maturity model performed slightly
better within rule, but not within violation. Conversely, people knowing
the Richardson maturity model perceived the wviolation API snippets
as slightly more difficult to comprehend. This seems to indicate that
violating design rules decreases understandability regardless of demo-
graphic attributes like experience.

5 Threats to validity

This section describes how we tried to mitigate potential threats to validity, and which threats
and limitations to our results remain. We discuss these issues mainly through the perspectives
provided by Wohlin et al. (2012).

Construct validity is concerned with relating the experiment and especially its collected
measures to the studied concepts. This includes whether our dependent variables were ade-
quate representations of the constructs. Our measure for understandability, namely TAU as a
combination of correctness and time (Scalabrino et al., 2021), has been used in several studies
before. It provides the advantage of increasing the information density in a single statistical
test. However, TAU’s trade-off between time and correctness is not ideal when correctness is
binary. TAU therefore definitely has limitations, but looking at time and correctness separately
to interpret the results allows reducing these threats. Regarding the perceived understand-
ability, it is an accepted practice to use ordinal scales that are balanced and symmetrical for
subjective ratings.

To avoid hypothesis guessing (Wohlin et al., 2012), participants were told that the goal
of the experiment was to analyze the understandability of different Web API designs. We
see it as very unlikely that participants figured out the true goal of the experiment and
then deliberately gave worse responses for violation tasks. Lastly, it is possible that our
experiment may be slightly impacted by a mono-operation bias (Wohlin et al., 2012), i.e.,
the underrepresentation of the construct by focusing on a single treatment. While we used
different categories with several rules each in the experiment, we still only compared one
exemplary rule implementation to its complementary violation in isolation. We did not com-
bine several rules or involved other RESTful API concepts, which could have led to a richer
theory.

Internal validity can suffer from threats that may impact the dependent variables without
the researchers’ knowledge, i.e., confounders (Wohlin et al., 2012). In general, a crossover
design is fairly robust against many confounders by reducing the impact of inter-participant
differences, e.g., large expertise or experience differences between participants. The relatively
short experiment duration of 10-15 minutes caused by our between-subjects characteristic
also made most history (Wohlin et al., 2012) or maturation (Wohlin et al., 2012) effects
unlikely, e.g., noticeable changes in performance due to tiredness or boredom. However,
due to the similar task structures, learning effects are very likely. Randomization of the
task order could have mitigated this, but it could also have led to suboptimal sequences of

@ Springer

Empirical Software Engineering (2023) 28:132 Page290f35 132

treatments and task categories, which could have introduced harmful carryover effects. Our
fixed sequences at least guaranteed that both treatments for the same task appeared at the same
position, thereby ensuring a similar level of maturation per experiment object. Additionally,
randomization was used to assign participants to the two sequences and to display the different
answers per comprehension question.

This study was conducted as an online experiment, with considerably less control over the
experiment environment. While random irrelevancies in the experimental setting (Wohlin
et al., 2012) might have occurred in some cases, such as reduced concentration due to loud
noise or an interruption by colleagues or family members, this potential increase in variance
still did not impact our hypothesis tests. Moreover, we also had no means to prevent peo-
ple from participating several times, as responses were anonymous. Due to no reasonable
incentive for this, we deem this threat as very unlikely.

External validity is the extent to which the results are generalizable to other settings or
parts of the population. Our sample was fairly diverse, with participants with different levels
of experience from both industry and academia. With 105 participants, our sample size was
also decently large when compared to many other software engineering experiments, even
though we need to remember that only half of our participants worked on each treatment per
individual rule due to our hybrid design. While we reached statistical significance for most
hypotheses, alarger sample would have improved the generalizability of the results even more.
Nonetheless, we see it as unlikely that the interaction of selection and treatment threat (Wohlin
etal.,2012) could impact our results. Even though most of our sample was located in Germany
(67%), we do not believe that country-specific differences might have a noticeable influence
on the results. To combat the threat interaction of setting and treatment (Wohlin et al., 2012),
we ensured using realistic API concepts and violations inspired by real-world examples. The
Swagger editor is also a very popular tool in the area of Web APIs.

Finally, we need to emphasize that the understandability of Web APIs was tested in a
consciously constructed setting, without a hosted implementation for manual exploration or
additional API documentation. Participants could only rely on the provided API snippets
in the visual notation from the Swagger editor. This is obviously different from a real-
world environment, e.g., in industry, where a software engineer trying to use a Web API
may have access to the API documentation or even a running API instance for manual
testing. However, in many cases, access to more documentation or the API itself is also not
available in the real world. Additionally, using these artifacts also requires additional time,
i.e., being able to understand the purpose of an endpoint without having to consult other
materials is still preferable. Moreover, it is also plausible that some rules might even have
a stronger effect in a real-world setting, e.g., RC401 and RC415: getting access to HTTP
header information requires a lot more effort there, while we conveniently presented the
headers in the experiment. All in all, we believe that our results are decently transferrable
to less controlled real-world environments. To analyze the full degree of this generalization,
follow-up research is necessary, e.g., based on repository mining or industrial case studies.

6 Conclusion and future work
In this paper, we presented the design and results of our controlled Web-based experiment
on the understandability impact of 12 RESTful API design rules from Massé (2011) and

Richardson and Ruby (2007). In detail, we presented 12 Web API snippets to 105 par-
ticipants, asked them comprehension questions about each snippet, and let them rate the

@ Springer

132 Page300f35 Empirical Software Engineering (2023) 28:132

perceived understandability. For 11 of 12 rules, we identified a significant negative impact
on understandability for the violation treatment. Effect sizes ranged from small to huge, with
Cohen’s d between d = 0.24 and d = 2.17. Furthermore, our participants also rated 9 of 12
rule violations as significantly more difficult to understand.

All in all, our results indicate that violating commonly accepted design rules for RESTful
APIs has a negative impact on understandability, regardless of REST-related experience or
other demographic factors. For several rule violations, we could also show that they are prone
to misinterpretation and misunderstandings, making them especially dangerous. Practitioners
should therefore respect these rules during the design of Web APIs, as understandability is
linked with important quality attributes like maintainability and usability. This becomes
especially important for publicly available APIs that are meant to be used by many external
people. Providing comprehensive API documentation may partly mitigate understandability
problems caused by rule violations, but is still an insufficient solution.

In the future, additional experiments should try to replicate these findings with other
samples of the population or other violations of the same rules, and potentially extend the
evidence to other rules not tested in our study. To enable such studies, we publicly share our
experiment materials!’. Additionally, tool-supported approaches to automatically identify
these rule violations will be helpful for practitioners trying to ensure the quality of their
Web APIs. Such tool support would also pave the way for large-scale studies of these rule
violations in less controlled environments, such as software repository mining or industrial
case studies.

Appendix

17 https://doi.org/10.5281/zenodo.7381500

Table 8 Descriptive statistics for RQ1

Task Mean TAU Mean duration (s) # of correct answers

rule violation rule violation rule violation
PluralNoun 0.8369 0.7046 20.82 32.23 52 (100%) 49 (94%)
VerbController 0.7617 0.5345 33.07 45.22 50 (94%) 38 (73%)
CRUDNames 0.7392 0.1982 27.10 41.55 49 (96%) 20 (38%)
PathHierarchyl 0.8457 0.5678 22.85 44.19 52 (98%) 40 (80%)
PathHierarchy2 0.7916 04913 23.62 46.55 52 (100%) 44 (83%)
PathHierarchy3 0.6141 0.7505 42.69 37.51 43 (83%) 50 (96%)
NoTunnel 0.4820 0.3396 44.80 52.60 33 (66%) 28 (54%)
GETRetrieve 0.8095 0.4337 2840 45.29 53 (100%) 31 (60%)
POSTCreate 0.8427 0.4201 2499 43.88 52 (98%) 29 (57%)
NoRC200Error 0.7268 0.3776 41.37 58.35 52 (98%) 29 (58%)
RC401 0.6058 0.5170 4342 67.21 38 (75%) 37 (70%)
RC415 0.7654 0.7044 50.05 57.97 51 (96%) 49 (94%)

@ Springer

https://doi.org/10.5281/zenodo.7381500

Empirical Software Engineering (2023) 28:132 Page310f35 132
Table 9 Extended descriptive statistics for TAU (RQ1)
Task Min TAU Max TAU Variance of TAU
rule violation rule violation rule violation

PluralNoun 0.4479 0 0.9322 0.9418 0.0067 0.0606
VerbController 0 0 0.9197 0.9572 0.0577 0.1276
CRUDNames 0 0 0.9065 0.8362 0.0320 0.0913
PathHierarchyl 0 0 0.9550 0.9359 0.0206 0.1118
PathHierarchy2 0.5652 0 0.9013 0.8902 0.0043 0.0836
PathHierarchy3 0 0 0.8959 0.9129 0.1008 0.0378
NoTunnel 0 0 0.9139 0.8657 0.1436 0.1112
GETRetrieve 0.5064 0 0.9433 0.9326 0.0095 0.1441
POSTCreate 0 0 0.9502 0.9374 0.0219 0.1621
NoRC200Error 0 0 0.8730 0.8941 0.0323 0.1263
RC401 0 0 0.9280 0.9323 0.1533 0.1312
RC415 0 0 0.9324 0.9511 0.0468 0.0477
Table 10 Extended descriptive statistics for response time (RQ1)
Task Min duration (s) Max duration (s) Variance of duration

rule violation rule violation rule violation
PluralNoun 8.65 7.43 70.48 127.66 109.92 510.73
VerbController 11.55 7.38 172.27 113.62 671.21 660.98
CRUDNames 11.05 12.59 61.47 118.14 130.32 660.62
PathHierarchyl 7.45 6.53 81.19 16546 181.03 934.83
PathHierarchy2 11.19 12.45 49.28 113.35 54.90 495.81
PathHierarchy3 16.05 14.20 162.99 140.22 638.31 607.81
NoTunnel 13.40 17.02 155.65 134.77 971.09 874.44
GETRetrieve 8.45 10.05 73.58 149.08 211.75 851.61
POSTCreate 8.89 9.50 84.65 178.55 258.03 1146.90
NoRC200Error 20.10 16.75 144.48 15821 556.36 1083.60
RC401 11.54 16.08 237.67 192.83 1588.84 1476.35
RC415 15.38 11.13 227.46 167.35 1550.69 1001.35

Table 11 Hypothesis testing results for TAU (RQ1), Holm-Bonferroni adjusted p-values, « = 0.05, sorted by

effect size

Task Test statistic (U) p-value Cohen’s d Accepted
CRUDNames 2434.0 < 0.001 2.17 yes
PathHierarchy?2 2359.0 < 0.001 1.43 yes
POSTCreate 2281.5 < 0.001 1.40 yes
GETRetrieve 2195.0 < 0.001 1.36 yes
NoRC200Error 2077.5 < 0.001 1.25 yes
PathHierarchyl 2225.5 < 0.001 1.09 yes
VerbController 1978.0 < 0.001 0.75 yes

a

Springer

132 Page32o0f35 Empirical Software Engineering (2023) 28:132

Table 11 continued

Task Test statistic (U) p-value Cohen’s d Accepted
PluralNoun 1928.5 < 0.001 0.72 yes
NoTunnel 1696.0 0.0093 0.40 yes
RC415 1884.5 0.0024 0.28 yes
RC401 1756.0 0.0093 0.24 yes
PathHierarchy3 944.0 0.9961 - no
PluralNoun: Rule 98% O‘I% 2%
PluralNoun: Violation 50% 33:% l 17%
VerbController: Rule 68% 23:% 9%
VerbController: Violation |46% 38l% 15%

CRUDNames: Rule 90% 8% 2%
CRUDNames: Violation 34% 17% 49%
PathHierarchy1: Rule 96% 4% 0%

PathHierarchy2: Rule 96% 4%

PathHierarchy1: Violation | 40% 24% B 36%

0%
PathHierarchy2: Violation | 26% 19l% 55%
PathHierarchy3: Rule 62% 2?;% 15%
PathHierarchy3: Violation | 58% 27l% . 15%
Tunnel: Rule 60% 20% | 20%
Tunnel: Violation 27% 21% B 52%
GETRetrieve: Rule 75% 21l% 4%

GETRetrieve: Violation 44% 29% 27%

POSTCreate: Rule 94% 4% 2%
RC200: Rule 89% 11% 0%

36%

POSTCreate: Violation | 47% 20 [l 31%

RC200: Violation 44% 20%

RC401: Rule 82% 10% | 8%
RC401: Violation 23% 19%] 58%
RC415: Rule 72% 15% | 13%
RC415: Violation 62% 19% | 19%
100 50 0 50 100
Percentage

very easy to understand (1) 2 3 4.very hard to understand (5)

Fig. 14 Likert plots of perceived difficulty ratings (RQ2)

Table 12 Hypothesis testing results for perceived difficulty ratings (RQ2), Holm-Bonferroni adjusted p-values,
o = 0.05, sorted by effect size

Task Test statistic (U) p-value Cohen’s d Accepted
PathHierarchy2 2462.0 < 0.001 2.06 yes
RC401 2297.5 < 0.001 1.57 yes

@ Springer

Empirical Software Engineering (2023) 28:132 Page330f35 132

Table 12 continued

Task Test statistic (U) p-value Cohen’s d Accepted
PathHierarchyl 2203.0 < 0.001 1.53 yes
CRUDNames 2254.5 < 0.001 1.52 yes
POSTCreate 2076.0 < 0.001 1.18 yes
PluralNoun 2069.5 < 0.001 1.18 yes
NoRC200Error 1851.0 < 0.001 0.94 yes
GETRetrieve 1972.5 < 0.001 0.87 yes
NoTunnel 1839.5 < 0.001 0.79 yes
VerbController 1676.0 0.0701 - no
RC415 1642.5 0.0774 - no
PathHierarchy3 1388.0 0.4051 - no

Table 13 Correlation between TAU and perceived difficulty for the treatment violation, sorted by correlation
strength, Holm-Bonferroni adjusted p-values, « = 0.05, insignificant correlations are marked with 7, difficulty
ratings and TAU provided for comparison

Task Kendall’s 7 p-value Median difficulty Mean TAU
rule violation rule violation

NoTunnel 0.2264 1.0000 + 2 4 0.4820 0.3396
CRUDNames 0.2124 1.0000 + 2 3 0.7392 0.1982
PathHierarchyl -0.0574 1.0000 ¥ 1 3 0.8457 0.5678
POSTCreate -0.0634 1.0000 ¥ 1 3 0.8427 0.4201
RC415 -0.0950 09238 F 2 2 0.7654 0.7044
NoRC200Error -0.1548 04996 1 2 3 0.7268 0.3776
RC401 -0.2516 0.0692 F 2 4 0.6058 0.5170
PathHierarchy2 -0.2582 0.0609 ¥ 1 4 0.7916 0.4913
PluralNoun -0.2595 0.0609 ¥ 1 2.5 0.8369 0.7046
PathHierarchy3 -0.3435 0.0062 2 2 0.6141 0.7505
VerbController -0.3543 0.0062 2 3 0.7617 0.5345
GETRetrieve -0.5078 < 0.001 2 3 0.8095 0.4337

Acknowledgements We kindly thank all our experiment participants for their valuable time! We also thank the
experts participating in our pilot for their detailed feedback! Lastly, we thank Dr. Daniel Graziotin (University
of Stuttgart) and Dr. Sira Vegas (Universidad Politécnica de Madrid) for discussing the experiment design and
its terminology with us.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

132 Page34of35 Empirical Software Engineering (2023) 28:132

References

Baltes S, Ralph P (2022) Sampling in software engineering research: A critical review and guidelines. Empirical
Software Engineering 27(4):94. https://doi.org/10.1007/s10664-021-10072-8

Bogner J, Fritzsch J, Wagner S, Zimmermann A (2019) Microservices in Industry: Insights into Technologies ,
Characteristics , and Software Quality. In: 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), IEEE, Hamburg, Germany, pp 187-195, https://doi.org/10.1109/ICSA-C.2019.
00041, https://ieeexplore.ieee.org/document/8712375/

Cohen J (1988) Statistical Power Analysis for the Behavioral Sciences, zeroth edn. Routledge ,https://doi.org/
10.4324/9780203771587, https://www.taylorfrancis.com/books/9781134742707

Fielding RT, Taylor RN (2002) Principled Design of the Modern Web Architecture. ACM Trans Internet
Technol 2(2):115-150

Haupt F, Leymann F, Scherer A, Vukojevic-Haupt K (2017) A Framework for the Structural Analysis of
REST APIs. 2017 IEEE International Conference on Software Architecture (ICSA). IEEE, Gothenburg,
Sweden, pp 55-58

Haupt F, Leymann F, Vukojevic-Haupt K (2018) API governance support through the structural analysis of
REST APIs. Computer Science - Research and Development 33(3—4):291-303

Jacobson D, Brail G, Woods D (2011) APIs: A Strategy Guide. O’Reilly Media,Inc

Jedlitschka A, Ciolkowski M, Pfahl D (2008) Reporting Experiments in Software Engineering. In: Guide to
Advanced Empirical Software Engineering, Springer London, London, pp 201-228, https://doi.org/10.
1007/978-1-84800-044-5_8, http://link.springer.com/10.1007/978-1-84800-044-5_8

Kendall MG (1938) A New Measure of Rank Correlation. Biometrika 30(1-2):81-93. https://doi.org/10.1093/
biomet/30.1-2.81

Kotstein S, Bogner J (2021) Which RESTful API Design Rules Are Important and How Do They Improve
Software Quality? A Delphi Study with Industry Experts. In: Service-Oriented Computing. SummerSOC
2021. Communications in Computer and Information Science, Vol 1429, Springer International Publish-
ing, pp 154-173, https://doi.org/10.1007/978-3-030-87568-8_10, http://dx.doi.org/10.1007/978-3-030-
87568-8_10 https://link.springer.com/10.1007/978-3-030-87568-8_10

Martin Fowler (2010) Richardson Maturity Model. https://martinfowler.com/articles/
richardsonMaturityModel.html. Last accessed 26 March 2021

Massé M (2011) REST API Design Rulebook. O’Reilly Media, Inc., Sebastopol, CA, USA, https://www.
oreilly.com/library/view/rest-api-design/9781449317904/

Neuhiuser M (201 1) Wilcoxon-Mann-Whitney Test. In: Lovric M (ed) International Encyclopedia of Statistical
Science, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1656—1658, https://doi.org/10.1007/978-3-
642-04898-2_615, http://link.springer.com/10.1007/978-3-642-04898-2_615

Neumann A, Laranjeiro N, Bernardino J (2018) An Analysis of Public REST Web Service APIs. IEEE
Transactions on Services Computing PP(c):1-1

Palma F, Dubois J, Moha N, Guéhéneuc YG (2014) Detection of rest patterns and antipatterns: A heuristics-
based approach. Service-Oriented Computing. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 230—
244

Palma F, Gonzalez-Huerta J, Founi M, Moha N, Tremblay G, Guéhéneuc YG (2017) Semantic Analysis
of RESTful APIs for the Detection of Linguistic Patterns and Antipatterns. International Journal of
Cooperative Information Systems 26(02):1742001

Palma F, Zarraa O, Sadia A (2021) Are developers equally concerned about making their apis restful and the
linguistic quality? a study on google apis. In: Computing Service-Oriented, International Springer (eds)
Hacid H, Kao O, Mecella M, Moha N, Paik Hy. Publishing, Cham, pp 171-187

Palma F, Olsson T, Wingkvist A, Ahlgren F, Toll D (2022a) Investigating the linguistic design quality of public,
partner, and private rest apis. In: 2022 IEEE International Conference on Services Computing (SCC), pp
20-30, https://doi.org/10.1109/SCC55611.2022.00017

Palma F, Olsson T, Wingkvist A, Gonzalez-Huerta J (2022b) Assessing the linguistic quality of rest apis for
iot applications. J Syst Softw 191(C), https://doi.org/10.1016/j.jss.2022.111369,

Pautasso C (2014) RESTful web services: Principles, patterns, emerging technologies. Web Services Founda-
tions, vol 9781461475. Springer, New York, New York, NY, pp 31-51

Pautasso C, Zimmermann O, Leymann F (2008) Restful web services vs. “big" web services: Making the
right architectural decision. In: Proceedings of the 17th International Conference on World Wide Web,
Association for Computing Machinery, New York, NY, USA, WWW °08, p 805-814, https://doi.org/10.
1145/1367497.1367606,

Petrillo F, Merle P, Moha N, Guéhéneuc YG (2016) Are REST APIs for Cloud Computing Well-Designed? An
Exploratory Study. Service-Oriented Computing. Springer International Publishing, Cham, pp 157-170

@ Springer

https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://ieeexplore.ieee.org/document/8712375/
https://doi.org/10.4324/9780203771587
https://doi.org/10.4324/9780203771587
https://www.taylorfrancis.com/books/9781134742707
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8
http://link.springer.com/10.1007/978-1-84800-044-5_8
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1007/978-3-030-87568-8_10
http://dx.doi.org/10.1007/978-3-030-87568-8_10
http://dx.doi.org/10.1007/978-3-030-87568-8_10
https://link.springer.com/10.1007/978-3-030-87568-8_10
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.oreilly.com/library/view/rest-api-design/9781449317904/
https://www.oreilly.com/library/view/rest-api-design/9781449317904/
https://doi.org/10.1007/978-3-642-04898-2_615
https://doi.org/10.1007/978-3-642-04898-2_615
http://link.springer.com/10.1007/978-3-642-04898-2_615
https://doi.org/10.1109/SCC55611.2022.00017
https://doi.org/10.1016/j.jss.2022.111369
https://doi.org/10.1145/1367497.1367606
https://doi.org/10.1145/1367497.1367606

Empirical Software Engineering (2023) 28:132 Page350f35 132

Renzel D, Schlebusch P, Klamma R (2012) Today’s Top “RESTful" Services and Why They Are Not RESTful.
Web Information Systems Engineering - WISE 2012. Springer, Berlin Heidelberg, Berlin, Heidelberg,
pp 354-367

Richardson L, Ruby S (2007) RESTful Web Services. O’Reilly Media, Sebastopol, CA, USA

Rodriguez C, Baez M, Daniel F, Casati F, Trabucco J, Canali L, Percannella G (2016) REST APIs: A large-
scale analysis of compliance with principles and best practices. In: Lecture Notes in Computer Science,
Springer, vol 9671

Sawilowsky SS (2009) New Effect Size Rules of Thumb. Journal of Modern Applied Statistical Methods
8(2):597-599, https://doi.org/10.22237/jmasm/1257035100, http://digitalcommons.wayne.edu/jmasm/
vol8/iss2/26

Scalabrino S, Bavota G, Vendome C, Linares-Vasquez M, Poshyvanyk D, Oliveto R (2021) Automatically
assessing code understandability. IEEE Trans Software Eng 47(3):595-613. https://doi.org/10.1109/TSE.
2019.2901468

Schermann G, Cito J, Leitner P (2016) All the Services Large and Micro: Revisiting Industrial Practice
in Services Computing. In: Norta A, Gaaloul W, Gangadharan GR, Dam HK (eds) Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol 9586, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 36—47, https://doi.org/10.
1007/978-3-662-50539-7_4, http://link.springer.com/10.1007/978-3-662-50539-7

Shaffer JP (1995) Multiple Hypothesis Testing. Annual Review of Psychology 46(1):561-584. https://doi.org/
10.1146/annurev.ps.46.020195.003021

Shapiro SS, Wilk MB (1965) An Analysis of Variance Test for Normality (Complete Samples). Biometrika
52(3/4):591. https://doi.org/10.2307/2333709, https://www.jstor.org/stable/2333709?origin=crossref

Vegas S, Apa C, Juristo N (2016) Crossover Designs in Software Engineering Experiments: Benefits and
Perils. IEEE Transactions on Software Engineering 42(2):120-135. https://doi.org/10.1109/TSE.2015.
2467378, http://ieeexplore.ieee.org/document/7192651/

Webber J, Parastatidis S, Robinson I (2010) REST in Practice: Hypermedia and Systems Architecture, 1st edn.
O’Reilly Media, Inc., Sebastopol, USA

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2012) Planning. In: Experimentation in
Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg , pp 89-116, https://doi.org/10.
1007/978-3-642-29044-2_8

Wyrich M, Bogner J, Wagner S (2022) 40 years of designing code comprehension experiments: A systematic
mapping study. https://doi.org/10.48550/ARXIV.2206.11102

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.22237/jmasm/1257035100
http://digitalcommons.wayne.edu/jmasm/vol8/iss2/26
http://digitalcommons.wayne.edu/jmasm/vol8/iss2/26
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
http://link.springer.com/10.1007/978-3-662-50539-7
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.2307/2333709
https://www.jstor.org/stable/2333709?origin=crossref
https://doi.org/10.1109/TSE.2015.2467378
https://doi.org/10.1109/TSE.2015.2467378
http://ieeexplore.ieee.org/document/7192651/
https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.48550/ARXIV.2206.11102

	Do RESTful API design rules have an impact on the understandability of Web APIs?
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Terminology
	2.2 Best practices for REST in practice
	2.3 Related work

	3 Research design
	3.1 Research questions
	3.2 Participants and sampling
	3.3 Experiment objects
	3.3.1 URI design
	3.3.2 Hierarchy design
	3.3.3 Request methods
	3.3.4 HTTP status codes

	3.4 Material
	3.5 Tasks
	3.6 Variables and hypotheses
	3.7 Experiment design
	3.8 Experiment execution
	3.9 Experiment analysis

	4 Results and discussion
	4.1 Participant demographics
	4.2 Impact on understandability (RQ1)
	4.3 Impact on perceived difficulty (RQ2)
	4.4 Relationships with demographic attributes (RQ3)

	5 Threats to validity
	6 Conclusion and future work
	Appendix
	Acknowledgements
	References

