
 
 
 
 

1 

Abstract — Requirements and approaches for introductory 
courses in software development at universities differ 
considerably. There seems to be little consensus on which 
languages are a good fit, which methodologies lead to the best 
results and especially which goals should be chosen. This paper 
takes a look at current approaches and difficulties at our own 
faculty – computer science and media at the Stuttgart Media 
University – and explores a combination of teaching techniques 
which seem to make a difference. The most important change was 
to switch to a project-based approach instead of the usual exercises 
given to students after a lecture. The second one is the flipped 
classroom approach with micro-exams at the beginning of 
lectures. The third one is an emphasis on professional tools to be 
used during the project. We also try to achieve a concept-based 
approach using e.g. modelling techniques to get a better 
understanding of source code control and build. And finally, we 
work as a team of two lecturers which allows us time to reflect on 
how we do things and creates new ideas frequently. None of those 
approaches is without problems as we will show, and we have met 
with some critique in our own faculty. The paper is explorative, 
based mostly on observations and feedback from students, but we 
intend to get some quantitative results as well in later publications. 

 
Index Terms—Computer science education, Object oriented 

programming, Object oriented methods 
 

I. INTRODUCTION 
IN this paper, we describe several technological and 

organizational changes we made to software development at 
HdM (Hochschule der Medien, Stuttgart, Germany) in general 
and in a second term advanced software development class 
specifically. We will report the observations we made and the 
feedback from students and the faculty. 

The first chapter describes the history of software 
development classes at HdM and how they fit into the big 
picture of the curriculum and the forces from the industry. The 
second chapter gives a more detailed view of a second term 
class in software development and the changes that were made 
during roughly three years. 
The following chapters describe some of the changes in detail, 
like the process orientation, flipped learning, professional tool 
chain, concept-based education and finally team-teaching 
effects. The final chapter tries to create the big picture of 
courses and approaches toward software development in our 
faculty.  

 

II. SETTING THE STAGE: SOFTWARE DEVELOPMENT AT 
HDM 

Roughly three years ago the lecturers for the first and second 
term software development classes changed and the lecturer for 
the first term (SD1, Software Development 1) switched from C 
to Java and introduced so called flipped learning techniques. 
Standard handbooks for Java were selected [3], [4], [5] and 
students have to read a chapter for every lecture in advance. The 
lecturer also uses Maven, unit-tests and Git to organize 
exercises and also the final exam is written test on a PC. 

This is followed by an advanced Java class in the second term 
which is an 8 ECTS/6 hours class with 2 hours lecture and 4 
hours exercises in the computer lab. It has two lecturers – an 
experienced professor and a PhD candidate. Due to the switch 
of the programming language from C to Java in the first term, 
the second term class had to be re-designed anyway and both 
lecturers made their areas of expertise part of the curriculum. 
The first plan for the new class looked like this: 

• Repetition from the first semester 
• Objects and classes 
• Inheritance 
• Collections 
• Exceptions 
• Inner classes 
• UML 
• Git 
• Threads 
• GUI with JavaFX, Event Handling 
• Streams 
• Generics 

For every topic special lab exercise was initially designed. 
The class soon followed the flipped learning approach of the 
first term. To ensure that students read the chapters of the 
handbook, micro-exams of about 15 minutes were conducted at 
the beginning of some lectures. 

The team-teaching approach of both lecturers quickly 
showed its strength and resulted in major improvements for the 
class as the lecturer who is not currently active can observe the 
students and how they react on certain things. He can support 
the active lecturer and add additional information. Things 
which do not work are quickly detected and fixed.  

The fusion of two lecturers’ expertise resulted in a course 
with much more emphasis on software architecture, scalability 
and professional development techniques than before. Initially, 

On How We Can Teach – Exploring New Ways in 
Professional Software Development for Students  

 

Walter Kriha, Tobias Jordine 



 
 
 
 

2 

it was not even obvious to the lecturers, how big a change this 
would finally be. But it turned out that the word “advanced” for 
the second term course did not mean advanced syntax but 
syntax following design following software architecture. While 
still very practical due to the project work, the course itself is 
more top down starting with architectural issues and going over 
to design and implementation. This sounds like overkill 
initially, but many modern features of programming languages 
and tooling only make sense when they are used in the context 
of architectural requirements. 

And it quickly came apparent, that the usual exercises were 
not really able to support those topics. Interfaces – originally a 
topic of the first term – had moved together with others like 
collections into the second term where they fit much better. But 
how and especially why do students learn about interfaces 
without the need of an extensible software architecture? 

It became clear, that the only kind of exercises that would fit 
to the advanced topics of the second term were real but small 
projects. The students would form teams of ideally three to four 
persons, choose a project from a set of project ideas and 
implement it. 

The final project evaluation is done with a spreadsheet 
containing 10 required techniques (interfaces and inheritance, 
package structure, documentation, testing, GUI, logging and 
exceptions, UML, threading, streams and collections, factories) 
which each project needed to implement to get points (0-3 
points per required technology). The points from the project 
form 30% of the final grade with the rest coming from an end 
term written test (no online exam, no programming on a paper 
sheet, just concept questions). In effect, this means that with a 
decent project result it is almost impossible to not pass the 
complete exam, considerably reducing anxiety and fear for the 
students. The lecturers like the fact that a professional attitude 
shown by the students gets rewarded in a transparent way. 

The introduction of projects instead of exercises caused 
many changes with respect to organization, participation, 
content, order and evaluation of the course.  It turned out to be 
absolutely crucial that the current state of the student-projects 
is in lockstep with the topics handled in the lecture. The 
mistakes the lecturers made are described in the chapter on 
“Team Projects instead of Exercises” below. 

Feedback from students indicates that this was the most 
successful change made to the class. 

The current order of sessions in the course looks like this: 
• UML 
• Git 
• Inheritance & Interfaces 
• Collections 
• Unit testing 
• Logging 
• Exceptions 
• GUI with JavaFX 
• Inner classes & Event Handling 
• Threads 
• Java Streams 
• Generics 

 
As a consequence of the new project structure, reviews are 

frequently conducted during lecture time and after some initial 
reservations students quickly realize how much a public 
discussion can improve the model of an application and the 
application itself. 

The course gets very positive evaluations from students and 
mixed comments from faculty members. Some critique is 
basically unavoidable due to the fact, that the focus is on Java 
and C skills were abandoned. It was recognized that lecturers 
often tend to underestimate how quickly things are forgotten 
after a three-month break, especially practical skills and 
students frequently underestimate what they learned in a 
previous class and often claim “that they didn’t learn anything”. 
This is part self-defense as topics get repeated instead of new 
topics introduced and part self-assessment problem [6], [7]. In 
the second term class the repetition-sessions were dropped 
completely. They were found to be much too passive and the 
projects automatically forced students to close knowledge gaps 
from the first term. The critique from faculty staff certainly 
needs further investigation and also some quantitative research. 

The following chapters discuss some aspects of the new class 
in detail. 

III. FLIPPED LEARNING IN SOFTWARE DEVELOPMENT 
The lecturers decided to try “peer instruction”, an approach 

similar to the “flipped classroom” concept. Peer Instruction is a 
specific pedagogical practice defined by Eric Mazur at Harvard 
University [8]. More information and teaching materials can be 
found at [9]. 

What were the reasons behind such a didactic change? The 
SD1 lecturer had started to use a flipped classroom concept and 
turned into an evangelist for it. A practical reason was the lack 
of a lecture script for the new topics in SD2 (Software 
Development 2) and the lecturers started to question their roles 
in the course: Is it really worth to create a new script for a basic 
course in software programming when a lot of excellent 
handbooks and teaching materials already exist? And even 
more important: Is the time spent in telling basic know how in 
a lecture really well spent? 

“Flipped classrooms” emphasize pre-lecture work done by 
students. Usually they need to read a chapter in a book to 
prepare for the next lecture. If done properly, the lecture time 
turns into the discussion of problems students were facing. 
Time spent clarifying concepts behind problems is much better 
spent than with reading basic information to an audience.  

The essence behind is also clear: How do you get the students 
to read the material in advance? And how do you evaluate the 
quality of the preparation? 

The lecturers decided to use micro-questionnaires with 6-10 
short questions about the chapter. At the beginning of the 
lecture students got between 15 and 20 minutes time for the 
answers. As this is all quite experimental, no digital support 
platforms like Ilias or Moodle are used yet. 

The lecturers observed different behaviors which turned out 
to be quite stable across terms. Initially, a larger number of 
students turn in empty questionnaires. Obviously, they didn’t 



 
 
 
 

3 

read the material and were unable to answer the questions. It 
quickly became obvious as well, that they were not able to 
follow the discussions during the lecture. With a flipped 
classroom concept, the lecture does not repeat the content of the 
handbook chapter. The lecture has its focus on conceptual 
problems. 

As soon as some sessions skip the questionnaires, morale 
drops even further. This points to some fundamental problems 
with the approach and they mostly have to do with resources. 
As student-tutors are not allowed to grade other students work 
in Germany, the two lecturers are unable to grade the micro-
questionnaires. The answers are only used to get a feeling for 
which topics the students might have problems with. Many 
students try to understand the major topics by simply following 
the discussions during the lecture – which turns out to be 
impossible with difficult topics like multi-threading. The fact 
that due to project work it is quite hard to fail in the final written 
examination, many students gamble and try to get by without 
much pre-lecture work. 

The lesson learned is clear: the micro questionnaires need to 
be evaluated every time. And there is another reason to do so, 
which became very clear in a different seminar [10] that used a 
journal-club approach: Even students who read the pre-lecture 
materials complain frequently, that they are unable to answer 
many of the questions. Why is that? And how should the 
questions look like? There needs to be some kind of reward for 
reading the materials and so students should be able to give 
answers to some questions. If you did not read the material, you 
should not be able to answer the questions and that is usually 
the case. But there needs to be some questions which challenge 
the understanding of difficult parts of the material. Those parts 
which beginners easily skip until they learn, that there will be 
questions exactly about those parts. This is a training process 
and according to our experience students need to read around 
5-6 papers or chapters until they learn to actively question the 
content. For a detailed description of such a process in a course 
on concurrency and parallelism see [10]. 

The difficult questions are also a hint toward the final written 
test and make students aware of complicated concepts which 
need to be understood.  

Having constrained resources, the experiences with a flipped 
classroom concept in software development are mixed: The 
concept shows its strength better in small journal-club seminars, 
where a small group of like-minded students and their lecturer 
try to understand new topics.  Still, for SD2 saved valuable time 
by using the flipped classroom concept. They did not have to 
write a new script or explain the absolute basics in the lecture. 
The time saved is invested in the possibly most successful 
change that has been made to SD2: team projects. 

IV. TEAM PROJECTS INSTEAD OF EXERCISES 
Before projects as a means in learning software development 

are introduced, a few statements on programming are in order. 
Both lecturers of SD2 were convinced, that developing software 
in itself is a sensually satisfying activity if done in the right 
context. Time pressure or single exercises do not provide the 
right context: An exercise sheet might belong to the context of 

a specific lecture, but over the whole term it is completely 
standalone and out of context and this can affect motivation 
Learning how to develop software also means to learn the 
syntax of a programming language. This can only happen 
through the use of the language. No amount of syntax 
demonstrated in lectures will turn somebody into a programmer 
and that is the reason why the lecturers decided to leave the 
learning of syntax as a task to students – supported by stack-
overflow, the support of lecturers and the newly introduced 
practical projects. And finally, software development is 
teamwork and that is another reason why it can be a very 
satisfying experience. 

The final push towards the use of projects in software 
education came from recognizing the limits of exercises in 
advanced software topics. The syntax of e.g. Java Interfaces is 
trivial, their use goes deep into software architecture. How 
could one learn the use of Interfaces through single exercises? 
And the same goes for logging, exceptions and many other 
topics of advanced programming language use. 

Students liked the idea of projects immediately and several 
open issues needed to be solved right away: Team building, 
project type, deadline and how the project result would 
influence the final exam. 

Team building was and still is a rather ad-hoc process which 
starts already in the first session of the term and needs to be 
completed quickly. 2-3 students per group are the norm because 
larger groups encourage “free-riding” students. Mostly, this 
process works quite well, and students manage by themselves. 

Initially, we had a small list of project types (note taking app, 
address management tool., customer relationship app, sports 
competition manager etc.) to choose from, but we learned to be 
less restrictive and let the students basically choose whatever 
type of project they want. This led to much more game 
development and advanced project ideas. Frequently, students 
notice quickly that they had taken more than they could achieve, 
which is an important lesson to learn in software development. 
The lecturers ensure, that not too much time is wasted and 
shortcuts to the project goals are suggested where needed. 

The deadline became the day of the final written 
examinations at the end of term. At this day, the groups send a 
link to the Git repository to the lecturers and further 
development is frozen. The grading process starts now and the 
time the lecturers saved by not writing their own lecture notes 
is now spent several times, as all the projects need to be 
evaluated. The whole process is very transparent and guided by 
spreadsheet, introduced in the above. This spreadsheet contains 
ten required features and the degrees of fulfillment for each. 
Zero to three points per feature are possible. Three points are 
usually related to an architecturally sound solution e.g. for 
exceptions and logging or building an extensible base 
framework with interfaces. The lecturers check out the projects 
and run a couple of shell scripts to detect certain features in the 
code. The applications are started to evaluate the GUI 
development. In most cases the students know the final result 
already in advance, as they can do the same evaluation since 
they can fill the same spreadsheet by themselves. This is 
certainly a lot of work for the lecturers in addition to the final 
written examination of one-hour length. But both lecturers 



 
 
 
 

4 

consider it worthwhile as looking at the source code of the 
projects makes deficits in the lecture visible. 

Mistakes were made, too. The term was started with a 
repetition of first term topics over roughly 3 weeks. Then new 
topics were introduced in the lecture and finally the projects 
were started. This made the projects very late in the term and 
caused massive overload at the end. We realized that the 
repetitions were actually not needed or would happen 
automatically as part of the project work. In addition, it was 
realized that the order of the topics was required to be 
reorganized to start project work early on in the term. Ideally, a 
topic that gets treated in a lecture should be implemented right 
afterwards in a project. By using such an approach, the topic is 
still fresh in the mind of the students and a short and successful 
implementation afterwards can be fun. It is also very beneficial 
to do this in the regular exercise time of the course, as both 
lecturers and tutors are available during that time. 

But not all topics are equal. While the approach described 
above works very well e.g. for implementing and using a 
logging framework or starting with an exception architecture, 
building the GUI takes quite a while and effort and tends to 
separate lecture topics from implementation for several weeks. 
The solution was to start with project planning work and 
modeling in UML. Afterwards, all topics that can be 
implemented quickly are covered and only after every team has 
a baseline implementation of the model we start with GUI 
programming. It is recognized that this will need more time for 
the implementation and during that time we do reviews and 
more theoretical concept work in the lecture. After several 
improvements, the projects terminate in time and without 
overload. The results are usually quite good, sometimes 
exceptionally good. 

It needs to be stated that the use of threads in a shared state 
context are still a problem with this approach. It was noticed 
that while the students are able to answer conceptual questions 
on threads in the written exam, they are unable to transform 
those threading concepts into their projects in most cases. Two 
different approaches will be used in the next term: First, a 
special code review session after the threads lecture will be 
conducted. This way students will be able to see and discuss 
different implementations. Second, a short code example with 
a deadlock caused by nested synchronize statements will be 
given to them to fix. Past experience has shown that frequently 
sleep() statements are used to delay execution of one thread or 
that the nested synchronized statements are separated, thereby 
destroying the transactional safety.  

Some interesting observations were made over roughly six 
terms: With regular exercises, the computer lab tended to be 
quite empty towards the end of the term. Often several weeks 
before term end students did no longer show up for exercises 
and concentrated on preparations for the final exams. This 
changed considerably with projects. A constantly good 
attendance is observed e.g. because some teams need help for 
their implementation. In addition, experienced teams trying to 
improve their project even further and sometimes the didactic 
purpose of the project needs to be made clear again. Those 
better students would possibly not attend the exercise sessions 
without projects at all. They find the general exercises either 

boring or trivial and tend to attend only the lecture. But since 
they are able to choose their own project, they can now pick 
advanced topics (e.g. some distributed client-server idea) and 
still get help when it is needed. 

Regular public reviews are done during lecture time. 
Students quickly learn how valuable those are and lose their 
shyness when presenting their UML models or code. 

In course evaluations students claim a much better 
motivation due to the project structure of the class. The amount 
of free-riding that happens is still unclear. By keeping the 
groups small and making the written exam a bit more important 
again it is tried to counter this effect. This – and the overall 
effects and side-effects on the computer science curriculum will 
be discussed below. 

A disclaimer on the use of the term “project”. The term is 
used here in a very special way. In this paper, the “project” term 
means a tightly guided goal for a team of students with a purely 
didactic purpose and with fixed time slots in the lab where 
support is always available. Completeness (besides the ten 
required features) is not required nor beauty (even though 
students spend quite some time and emotion on graphical 
designs). The projects have nothing to do with projects in later 
terms, where teams develop independent solutions. This type of 
loosely running project would not work in early terms. 

Introducing new things in a course is not side-effect free. 
Student workload and motivation need to be monitored 
carefully across classes in a term. In discussions with the 
operating-systems lecturer it was identified that most of the 
students were using OS-exercise time to work on their software 
development projects. Students show a very high motivation in 
projects but there is only limited time available in a single term. 
This means that projects need to be kept small and few, 
otherwise students won’t be able to cope with the workload and 
fail in other courses. Project-oriented courses leave room for 
purely theoretical courses as well and there is no reason to inject 
every course with a project structure. In case of workload 
problems, it is recommended to start a discussion in the faculty 
about shifting courses.  

V. PROFESSIONAL TOOLING 
It has already been mentioned that SD2 works its way top-

down from architecture and model to syntax and 
implementation along the lines of a real project. The lecturers 
of both SD1 and SD2 decided to expose students early on to a 
set of standard tools and processes. This included GitLab for 
source control and teamwork, Maven for automatic builds and 
environment control and unit-tests (JUnit 4) for better code 
quality. The second term adds usage of a logging framework 
(log4J 2), UML 2 modeling and a GUI framework (JavaFX). 

This is a lot to digest and it has raised some critique by staff 
members which claimed that students are simply overwhelmed 
and without a proper understanding of those tools. There is 
certainly some truth behind this critique. Students start using 
tools without an understanding of the technology behind or 
sometimes even the purpose they serve. This is countered with 
a concept-based approach in the second term 

 The question is: Can professional software development be 



 
 
 
 

5 

taught with a focus on the language only – or is it required to 
include architecture, tooling and process from the beginning? 
In other words, there are two very different views on learning 
software development about. The first one, the traditional one, 
starts with language and adds tools, design patterns, 
architecture, distribution and databases later on. In the context 
of this paper this is called the “burger model” because it adds 
things like the stack of a hamburger. The other one, the 
“progressive image model”, starts with everything at once but 
with a low resolution resulting in a coarse-grained picture. And 
piece by piece more detail is added and the whole picture 
becomes visible. Both models can come to the same end, but 
they take a very different way. 

 

 
Figure 1: Example for the burger model 

 

 
Figure 2: Example of the progressive image model 

 
The burger model is probably much easier to organize as it 

requires less cross-cutting topics between classes. An integrated 
view of all topics might be easier to achieve with the 
progressive image model. Here is not the place to discuss the 
advantages or disadvantages of both models. In reality, there 
will be probably anyway a mixture of both approaches. But it 
has to be clear that whichever you chose will have a major 
impact on the organization and structure of later classes in your 
curriculum. 

 

VI. CONCEPT-BASED TEACHING AND LEARNING 
The choice of language – in this case Java – is only a tool. It 

is used to demonstrate the OO-paradigm and in the first term 
also some procedural ideas. Java streams are used to introduce 

the functional paradigm and at no time we claim superiority of 
any paradigm. Instead, it is pointed out to the students, that they 
should invest in the functional and procedural paradigm as well 
and offer classes in functional programming and C/C++. And 
that is probably the only way to keep other lecturers happy as 
well who need different paradigms in their courses. Peter van 
Roy and Seif Haridi give an example for concept-based 
understanding in [13]. 

When teaching and using Git, the concept of generic source 
control is explained by building a model of Git in UML. Some 
design patterns (e.g. Singleton, Factory) are introduced early in 
the second term – one could almost say that students find them 
by necessity when discussing interfaces etc. 

Overall, the second term software development class has 
turned into an incubator for advanced concepts which need to 
be extended in later classes. 

A. Team teaching 
From a managerial point of view, spending more than one 

lecturer on a class is a waste of resources. While this may be 
true in economic terms, our case has shown that team teaching 
can improve a class in major ways. Different expertise and 
experience allow different point-of-views for both students and 
lecturers. Lecturers can observe the process better and make 
suggestions. They can even play devil’s advocate and express 
different opinions and preferences. And the overall success of 
the class can be discussed and regulated in case of problems. 

From the experiences gathered in six semesters, it is 
suggested that at least one of a professor’s classes should be 
held in team teaching form to allow sharing of didactic 
approaches and the joint development of new ideas and 
experiments. 

The new structure of SD2 would not have been possible 
without team teaching. 

B. Evidence 
So far, some observations from the lecturers and some 

critique from colleagues in our faculty about “students unable 
to program a loop” in later terms were collected. Students 
feedback will be evaluated below. Empirical validation of 
statements in software development are notoriously difficult 
[12]. Given the two models above for learning about software 
development it seems to be obvious that they will produce 
different results at different points in time. The burger approach 
with its clear boundaries might produce better test results per 
layer, the progressive image approach provides a better 
integrated view. In other words: Both will prefer and generate 
different questions with different qualities. How can these two 
approaches be compared?  

Currently, with a mix of burger/progressive image style 
classes, with new courses in Functional Programming and 
C/C++ and Cloud-Computing, it is almost impossible to 
compare results. 

But what about results in written exams? The SD1 lecturer 
uses a fully automated e-test with every task embedded into a 
unit-test template. The students embed their solution in the unit-
test and when it turns green, they get full point for the task. 
Soon, the time for the exam had to be doubled, because now 

Classes, Objects etc.

Methods
Conditions

Basic statements, Loops



 
 
 
 

6 

every typo needs to be fixed to make the unit-test work. This 
costs extra time. If the solution is almost perfect but the unit-
test does not work, the student gets no points at all. This causes 
a high negative stress level and runs counter to the idea of 
software development being a sensually satisfying activity. But 
it can get even worse: To pass such a test, the syntax and 
programming necessarily need to be really well established to 
get results in such a stressful situation. In other words, there 
needs to be a limited pool of possible tasks and the correct 
answers need to be trained well. In SD2, the exam contains only 
concept-based questions without requiring active 
programming. Code problems are shown, and students are 
asked to identify and fix them. This way of doing the exams fits 
to the concept-based teaching approach. 

 
1) Methodology 

For the evaluation of the teaching concept, students positive 
and negative feedback was collected from winter term 14/15 till 
winter term 17/18. Students had the opportunity to provide 
textual feedback after two thirds of the term has passed. Each 
student who was registered to the lecture had the chance to 
participate anonymously by using an online form. Participating 
students were mainly enrolled to the computer science and 
media and the mobile media bachelor’s degree study programs. 
Both lecturers were evaluated separately. For the analysis of the 
comments, a quantitative content analysis [14] is used. As the 
result, categories are derived based on the feedback material, 
the inductive approach is chosen (ibid.). 

 

 
Figure 3: Quantitative Content Analysis [14] 

 
About 350 students attended the lecture during seven 

semesters. 70 individual comments (positive and negative) 
were submitted by students. 
 

2) Results 
Next, the results of the feedback analysis are shown and 

interpreted. The top five mentioned categories for both the 
negative and positive comments are presented in the following. 

The results show that besides the success of the concept-

based teaching approach is not only dependent on the structure 
of the approach. In fact, personal aspects, such as lecturer’s 
ability to teach, their motivation, competence is a pre-requisite  
for a successful course. 
 

VII. A FRAMEWORK FOR TEACHING SOFTWARE 
DEVELOPMENT 

 
Figure 4: Software Development Lecture Framework 

 
Based on the experiences described in the above a software 

development lecture framework can be derived. This 
framework can be used and tailored by others for teaching in 
any programming language. The following explains each part 
of the proposed framework. 

 

A. Reading assignments  
The reading assignments are sent via e-mail in advance of a 

TABLE I 
POSITIVE FEEDBACK 

Manifestation Category 

Ability to teach (N=50) Personal aspects 
Motivating lecturers (N=29) Personal aspects 

Competence of the lecturers 
(N=25) 

Personal aspects 

Positive atmosphere (N=23) Personal aspects 

Teamwork (N=9) Personal aspects 

 
TABLE 2 

NEGATIVE FEEDBACK 

Manifestation Category 

Stray from the subject (N=8) Personal aspects 
Lack of a test exam (N=4) Lecture 

Inappropriate lecture time 
(N=3) 

Lecture 

Too extensive reading 
assignments (N=2) 

Reading assignments 

Unstructured (N=2) Personal aspects 

 



 
 
 
 

7 

lecture, usually a week before a specific topic is discussed. The 
sent links refer to existing tutorials, API documentations, 
articles and blog posts – expertise from professional developers 
and practitioners is reused. It is not necessary to create own 
reading assignments. Additionally, further readings can be 
provided for the more experienced students, which allows them 
to get deeper insights into topics they already know. Further, 
contrasting articles can lead to a discussion during lecture time. 

 

B. Mini tests 
Mini tests are handed out at the beginning of a lecture and 

contain questions about the topics covered by the reading 
assignments. The questions are mainly aiming at concepts and 
not syntax. Students have about 15 minutes to fill the tests and 
afterwards, the sheets are collected by the lecturers. A brief 
review of the returned tests indicates in which sub-topics 
comprehension problems appeared and serves as a foundation 
for the subsequent discussion. During the discussion these 
problems are explained e.g. by diagrams or code snippets. As 
far as possible a link between the current topic and the students’ 
projects is established. Some topics require deeper insights and 
examples (e.g. GUI development) for which presentation slides 
and live coding is prepared in advance. After each lecture, the 
mini test as well as the results of the live coding examples are 
published online. 

 

C. Software project 
The software project servers as a replacement for traditional 

programming exercises during lab sessions. Students are 
encouraged to implement the topics that were previously 
discussed in the lecture. This motivates them to think about how 
they can implement and adjust a specific topic for their project. 
The project also allows the use of professional tools (e.g. 
version control, modeling tools etc.) in a natural manner, which 
is hardly to achieve and artificial for traditional programming 
exercises. It has been observed that students are intrinsically 
motivated when they are allowed to freely choose their type of 
project (e.g. sports manager, address manager, board game). 
Before students start with programming, they need to ask the 
lecturers if the project scope is realistic to achieve the 
predefined requirements. Each project must match ten grading 
items which are linked to the topics presented in the lecture. 
This ensures that each topic was practiced by actual 
programming. It has been shown that a team size between two 
and four project members is ideal as group effects can be 
practiced, too. During the semester, students have at any time 
the chance to track their project progress as grading sheet is 
available for them and they are able to check which of the items 
are already implemented. Having a software project instead of 
programming exercises addresses both experienced and 
beginner students: experienced students have the opportunity to 
add more features than required to their project (e.g. database 
access) whereas beginning students only have to fulfil the 
requirements to get a very high grade. The software project 
counts one third of students’ final grade. 

 

D. Code reviews 
Code reviews, conducted at least two times during lecture 

time, link the lecture with the previously introduced software 
project. Each project team is required to present their current 
progress. Afterwards, the project is discussed with both 
students and lecturers. The reviews are aiming to ensure 
students’ progress and to improve their ability to discuss about 
code. The first review should be conducted during the first 
weeks of a semester right after students developed their first 
models with UML class diagrams as this allows to make 
changes easily. The second review should be conducted in the 
second half of the semester. It has been shown that most project 
groups have started with implementing most of the required 
topics and have concrete questions from which other groups can 
benefit. The presentation of the review should not be graded as 
it must be a “save environment” so that students can talk open 
about their implementation problems. 

 

E. Programming language 
The selected programming language should be taught for two 

semesters. This allows to introduce and focus on the syntax and 
the main concepts in the first semester. Having these main 
concepts as a foundation, allows to get more in detail by 
teaching advanced concepts and techniques during the second 
semester.  

 

F. Team teaching 
It is suggested to have two lecturers for teaching the 

advanced programming topics. Ideally, one of them is an 
experienced lecturer that is able to provide insights into real-
world projects and the other one is a PhD student. This team 
constellation allows both providing experiences feedback and 
managing the increased workload compared to traditional 
teaching approaches. 

 

G. Concept-based exam 
The exam at the end of the semester should focus on asking 

about concepts and not syntax. Students ability to code is 
checked by their implementation of the software project. 
Questions in the exam are aiming on how specific concepts can 
be used, their advantages and disadvantages as well as 
interpreting a code snippet (e.g. code that forces a dead lock). 
The exam counts two thirds of the final grade. When the grading 
is done, students get an automatically sent e-mail that contains 
detailed information on how they performed in each topic of the 
exam and the software project. 
 

VIII. SUMMARY 
This article introduced a concept-based teaching method for 

learning programming in the second term of computer science 
programs. The main differences to traditional head-on teaching 
are the switch from exercises to a software project, team 
teaching, mini tests, code reviews and reading assignments. 
Based on the experiences gathered in seven semesters of 



 
 
 
 

8 

applying and improving this approach, a software development 
teaching framework was derived, which allows others to use, 
tailor and improve this way of teaching. 
 

REFERENCES 
[1] H.Abelson, G.J.Sussmann, Structure and Interpretation of Computer 
Programs, 1996 
[2] J.Dean, Large-Scale Deep Learning for Intelligent Computer Systems, 
Google Tech Talk with Jeff Dean at Campus Seoul, 
https://www.youtube.com/watch?v=QSaZGT4-6EY 
[3] J.Goll, C.Weiß, F.Müller, JAVA als erste Programmiersprache. - vom 
Einsteiger zum Profi, Teubner Verlag 
[4] Christian Ullenboom, Java ist auch eine Insel, Rheinwerk Verlag 
[5] Budi Kurniawan, Java: A Beginner's Tutorial, Brainy software 
[6] G. W. Scott (2017) Active engagement with assessment and feedback can 
improve group-work outcomes and boost student confidence, Higher 
Education Pedagogies, 2:1, 1-13, DOI: 10.1080/23752696.2017.1307692  
[7] Boud, D., & Falchikov, N. (1989). Quantitative studies of student self-
assessment in higher education: A critical analysis of findings. Higher 
Education, 18, 529–549.10.1007/BF00138746[Crossref], [Web of Science ®], 
[Google Scholar] 
[8] Mazur, Eric. Peer Instruction: a User's Manual. Upper Saddle River, N.J.: 
Prentice Hall, 1997. Print. 
[9] http://www.peerinstruction4cs.org, a site run by Cynthia Bailey Lee of the 
Computer Science Department at Stanford University, and Beth Simon of the 
Department of Computer Science and Engineering at the University of 
California San Diego. 
[10] W.Kriha, flipped concurrency – Concurrency and how to improve 
reading and understanding, https://kriha.de/flippedconcurrency.html 
[11] Competences after C-Crash Course: compile and run on console: 90%, 
basic language features like variables and control structures: 50-90%, function 
declarations and calls: 66%, pointers and references: 33%, using syscalls 33-
50% (from B.Binder, HdM) 
[12] G. Wilson, what we actually know about software, 
http://vimeo.com/9270320 
[13] P. Van Roy, S. Haridi Concepts, Techniques, and Models of Computer 
Programming, MIT Press 
[14[ P. Mayring, Qualitative Inhaltsanalyse, Forum: Qualitative Social 
Research, 2000, http://dx.doi.org/10.17169/fqs-1.2.1089 

 
 

Walter Kriha Since 2002 Walter Kriha holds a 
professorship in Distributed Computing and 
Internet Technologies at Hochschule der 
Medien, Stuttgart. His research projects 
included virtual lab technologies and secure 
systems for smart-energy grids. Besides his 
academic work he spent many years in the 

industry, developing software for Unix kernels and embedded 
control, object-oriented frameworks and Internet portals. In 
2017 he won the prize for best teaching at HdM.  
 
 
 

Tobias Jordine Tobias Jordine received the 
B.Sc. and M.Sc. degree in computer science 
and media at the Stuttgart Media University 
in 2009 and 2011. In the beginning of 2013 he 
started his PhD studies in computer science 
education in cooperation with the University 
of the West of Scotland and the Hochschule 

der Medien. He finished his PhD in November 2017. He 

presented at the Frontiers in Education conference (FIE), 
Madrid, the European Conference in the Applications of 
Enabling Technologies, Glasgow and the European Conference 
on Games-based Learning, Paisley where he presented his PhD 
topic. Tobias Jordine is currently responsible for the technical 
development of a learning analytics project.  
 
 
 


