Submitted 4 May 2019
Accepted 15 July 2019
Published 19 August 2019

Corresponding author

Justus Bogner, justus.bogner@iste.

uni-stuttgart.de

Academic editor
Philipp Leitner

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.213

© Copyright
2019 Bogner et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

On the impact of service-oriented patterns
on software evolvability: a controlled
experiment and metric-based analysis

Justus Bogner'?, Stefan Wagner” and Alfred Zimmermann'

! Herman Hollerith Center, University of Applied Sciences Reutlingen, Boeblingen,
Baden-Wuerttemberg, Germany

% Institute of Software Technology/Software Engineering Group, University of Stuttgart,
Stuttgart, Baden-Wuerttemberg, Germany

ABSTRACT

Background: Design patterns are supposed to improve various quality attributes of
software systems. However, there is controversial quantitative evidence of this
impact. Especially for younger paradigms such as service- and Microservice-based
systems, there is a lack of empirical studies.

Objective: In this study, we focused on the effect of four service-based
patterns—namely Process Abstraction, Service Facade, Decomposed Capability, and
Event-Driven Messaging—on the evolvability of a system from the viewpoint of
inexperienced developers.

Method: We conducted a controlled experiment with Bachelor students (N = 69). Two
functionally equivalent versions of a service-based web shop—one with patterns
(treatment group), one without (control group)—had to be changed and extended in three
tasks. We measured evolvability by the effectiveness and efficiency of the participants
in these tasks. Additionally, we compared both system versions with nine structural
maintainability metrics for size, granularity, complexity, cohesion, and coupling.
Results: Both experiment groups were able to complete a similar number of tasks
within the allowed 90 min. Median effectiveness was 1/3. Mean efficiency was

12% higher in the treatment group, but this difference was not statistically significant.
Only for the third task, we found statistical support for accepting the alternative
hypothesis that the pattern version led to higher efficiency. In the metric analysis,
the pattern version had worse measurements for size and granularity while
simultaneously having slightly better values for coupling metrics. Complexity and
cohesion were not impacted.

Interpretation: For the experiment, our analysis suggests that the difference in
efficiency is stronger with more experienced participants and increased from task to
task. With respect to the metrics, the patterns introduce additional volume in the
system, but also seem to decrease coupling in some areas.

Conclusions: Overall, there was no clear evidence for a decisive positive effect of
using service-based patterns, neither for the student experiment nor for the

metric analysis. This effect might only be visible in an experiment setting with higher
initial effort to understand the system or with more experienced developers.

Subjects World Wide Web and Web Science, Software Engineering
Keywords Design patterns, Evolvability, Modifiability, Controlled experiment, Metrics,
Service-oriented architecture, Service-based systems, Microservices

How to cite this article Bogner J, Wagner S, Zimmermann A. 2019. On the impact of service-oriented patterns on software evolvability: a
controlled experiment and metric-based analysis. Peer] Comput. Sci. 5:e213 DOI 10.7717/peerj-cs.213

http://dx.doi.org/10.7717/peerj-cs.213
mailto:justus.�bogner@�iste.�uni-stuttgart.�de
mailto:justus.�bogner@�iste.�uni-stuttgart.�de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.213
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

INTRODUCTION

One important concern for enterprise software in today’s digital and fast-moving world
is the ability to quickly adapt to new or changing functional or cross-functional
requirements. This concern is addressed by the software quality attribute evolvability
(sometimes also referred to as modifiability or changeability): the degree of effectiveness
and efficiency with which a software system can be modified to adapt or extend it
(Rowe, Leaney ¢ Lowe, 1998; International Organization For Standardization, 2011).
Several benefits related to this quality attribute were achieved with the rise of service-
oriented computing (SOC) (Papazoglou, 2003), such as loose coupling, isolation of the
service implementation behind business-relevant interfaces, or convenient reuse and
composition. While Service-Oriented Architecture (SOA) (Er], 2005) is still an important
architectural style, Microservices (Newman, 2015; Fowler, 2015) gain more and more
popularity as a flexible, lightweight, and decentralized service-oriented variant.

One frequently used instrument to enhance modifiability is the application of design
patterns. Employing these established solution blueprints for recurring problems is
especially common with object-oriented systems. There is, however, also a significant
amount of patterns specifically designed for service-based and even Microservice-based
systems (Erl, 2009; Rotem-Gal-Oz, 2012; Richardson, 2018). One issue with design patterns
is that their relationship with quality attributes (QAs) is often complex and governed
by trade-offs. Moreover, while the benefits of patterns for QAs like modifiability seem
plausible in theoretical and qualitative studies (Bogner, Wagner ¢ Zimmermann, 2019),
quantitative empirical evidence for their effectiveness is of a more controversial nature.
In scientific literature, we find studies that do report a positive impact on QAs, studies
that do not, and studies that do so under certain conditions or only for selected patterns
(Garzds, Garcia ¢ Piattini, 2009; Hegedis et al., 2012; Ali & Elish, 2013). Awareness of and
familiarity with the concrete patterns is often discussed as a prerequisite for their
effectiveness.

Since most of these studies are concerned with object-oriented or architectural patterns
and there is very little empirical research on service-oriented patterns and modifiability,
we conducted a controlled experiment to partially address this gap. A total of 69 students
in two groups changed and extended two functionally equivalent versions of a
service-based web shop system (one pattern version, one non-pattern version) while
the time was measured for each task. Independent of this experiment, we also collected
structural maintainability metrics (e.g. size, coupling, cohesion) for both system versions to
have a foundation for a second comparison. The research objective for this study can
therefore be summarized in the following way:

Analyze selected service-oriented patterns

For the purpose of improving modifiability

With respect to effectiveness, efficiency, and structural metrics
From the viewpoint of inexperienced software developers (students)

In the context of a service-based web shop system

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 2/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

We follow the basic structure of the reporting guidelines for experiments in software
engineering as proposed by Jedlitschka, Ciolkowski ¢» Pfahl (2008). The remainder
of the paper first presents the technical background (“Background”) by elaborating the
concept of (service-oriented) design patterns and discussing related work in the area.
After that, we describe the experiment design (“Experiment Design”) and present
the experiment results (“Experiment Results”) followed by the metric results (“Metric
Analysis”). In the sections thereafter, we provide possible interpretations (“Discussion”)
and discuss limitations (“Threats to Validity”). Lastly, we compile the most important
lessons learned (“Lessons Learned from the Experiment”) and conclude with a summary
as well as potential future work (“Conclusion”).

BACKGROUND

To understand the motivation behind this study, two topics need to be explained in greater
detail: namely patterns as an instrument of software design as well as their relation to QAs,
for which we present related work in the area.

Design patterns
The idea of design patterns originated from the construction and city building language of
Alexander, Ishikawa & Silverstein (1977), who conceptualized a network of solution
blueprints. The concept was adapted to several other domains including computer science
and is very popular in software engineering and software architecture. As such, a pattern
is a proven and established solution to a recurring design problem that is documented
in a technology-agnostic form and can be implemented in many similar yet not completely
identical ways. The documentation is often systematic and standardized within a pattern
language and includes for example attributes like context, problem, forces, solution, or
related patterns. While the most famous examples are the object-oriented “Gang of Four”
design patterns of Gamma et al. (1994), there are meanwhile patterns for software
architecture (Buschmann et al., 1996), enterprise applications (Fowler, 2002), message-
based integration (Hohpe ¢» Woolf, 2003), or cloud computing (Fehling et al., 2014).
There is also a significant body of patterns in the field of SOC. Most of these have
been conceptualized for the context of SOA. Prominent examples are the patterns by
Erl (2009), Erl et al. (2012), Rotem-Gal-Oz (2012), or Daigneau (2011). They are usually on an
architectural level and are for example, concerned with service inventories, communication,
and composition, but can also be focused on the design of an individual service. Even
though a significant number of SOA patterns seems to be also applicable to Microservices
(Bogner, Zimmermann & Wagner, 2018), the first pattern languages for the younger
service-based architectural style are emerging (Richardson, 2018). Furthermore, several of
these Microservices patterns have existing ancestor patterns from SOA or other contexts.

Related work

One primary driver for the use of patterns is their impact on QAs like availability,
performance, or modifiability. Several studies have been conducted to analyze this complex
and controversial relationship.

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 3/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

In the context of object-oriented design, Garzds, Garcia & Piattini (2009) conducted a
controlled experiment with 47 students who had to analyze and modify four UML
class diagrams. One group worked on a standard and straightforward design model
while the other had a semantically equivalent version that contained design rules
(e.g., “Dependencies between classes must be implemented with abstractions.”) and
patterns (e.g. State or Composite). Understandability (via questions) and modifiability
(via extension tasks) were measured. Results showed that the latter version with rules
and patterns was more difficult to understand (58% less time and 15% more correct
answers for the non-pattern version). For modifiability, no statistically significant
difference in efficiency could be identified.

Hegediis et al. (2012) used a probabilistic quality model based on ISO/IEC 9126 to
analyze the maintainability of more than 300 revisions of the Java GUI framework
JHotDraw, which employs well-known object-oriented patterns. Every usage of design
patterns in JHotDraw is documented with JavaDoc and there are a lot of revisions that only
introduce patterns. The authors conclude from the analysis that the introduction of
additional patterns increased the overall maintainability in the system. They measured
a strong correlation (r-value: 0.89) between pattern-line-density and maintainability.

A broader view on the impact of the “Gang of Four” design patterns on software quality
is given by Ali ¢ Elish (2013). Their comparative literature analysis of 17 empirical
studies revealed that only four QAs and only a small subset of the patterns have been
examined. Moreover, no general consensus concerning the impact could be reached
(positive, neutral, or negative). Interestingly, for maintainability, evolution, and
change-proneness, the overall tendencies concerning the impact of the analyzed
patterns were negative.

In the domain of architectural patterns, Kassab, EI-Boussaidi ¢ Mili (2012) analyzed the
impact of the patterns Pipes and Filters, Layers, Model View Controller, and Broker on the
two QAs performance and security. They determined the quantitative effect of patterns
on QAs via the proxy of architectural tactics. From these results, they concluded for
example, that Model View Controller is best suited for performance while being least
suited for security and that the Layers pattern is most accommodating for security.

Riaz, Breaux & Williams (2015) conducted a systematic mapping study with the goal to
characterize the research design of empirical studies with human subjects about the
application of software patterns. Maintenance was the most frequent context with 16 of
30 studies. Nearly half of the studies were concerned with object-oriented design patterns
(14). Efficiency and correctness were the most common measures for evaluating the
pattern application. The authors also report that differences in experiment design make it
difficult to compare the results and that several studies fail to mention limitations as well as
how they minimized the threat of biases.

In the context of service orientation, Galster ¢» Avgeriou (2012) performed a theoretical
qualitative mapping of ~80 service-based design patterns to the QAs of the S-Cube Quality
Reference Model via force resolution maps (impact from —2 to +2). They reported
that 53 QAs from the very detailed S-Cube model were not addressed by the patterns.
Most mapped QAs were performance and scalability. Since S-Cube does not include some

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 4/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

! See https://github.com/xJREB/research-
modifiability-pattern-experiment for
source code, task descriptions, survey
questions, data set, and analysis results.
Zenodo mirror for non-source code
artifacts: DOI 10.5281/zenodo.3340971.

important QAs, they also used ISO/IEC 9126. For maintainability, they identified a total
of 12 patterns.

Lastly, Palma et al. (2014) analyzed the impact of service-based patterns and
anti-patterns on maintenance and evolution by collecting historical software development
meta data (# of Changes and Code Churn) for the FraSCAti system. They observed that
services involved in patterns required less maintenance effort. However, this effect was
not statistically significant. Services with anti-patterns on the other hand were found to
need significantly more maintenance effort, especially for instances of God Component or
Service Chain.

The presented related work gives an overview of the complex relationship between
patterns and QAs and the controversial evidence. Not many empirical quantitative studies
exist for service-based patterns in general and their modifiability in particular, which is
why we aim to bring additional quantitative insights into this relationship with the results
of the first controlled experiment as well as a metric-based analysis.

EXPERIMENT DESIGN

The research goal for our experiment was to analyze if selected service-based patterns have a
significant impact on the evolvability of a system in terms of the completion of modifications
within a given time (effectiveness) and the time needed per modification (efficiency). The
experiment object was a simple service-based web shop system that has been specifically
constructed for this experiment'. It consists of several RESTful Java services for example,
customers, orders, products, and notifications and a web based frontend. Data persistence
and unnecessary Create Read Update Delete (CRUD) operations have not been fully
implemented. As such, the system is reasonably close to a real world web shop, but is

still of manageable complexity for an experiment. The online shop domain was chosen
because most people are somewhat familiar with it from personal experience. Moreover, it is
very common to implement such systems in a service-oriented way.

We created two functionally equivalent versions of this web shop. One version was built
in an “ordinary” way (see Figs. 1 and 2) while the other version was designed with several
service-based patterns that are believed to be beneficial for modifiability, for example,
Process Abstraction and Service Fagade (see Figs. 3 and 4). Table 1 lists the selected patterns
together with their source, intended effect, and relevant task number. In general, the
pattern version of the system exhibits a higher base complexity (e.g., more services, special
patterns), but has been intentionally prepared for the nature of the task modifications
through the used patterns. We chose these patterns because their theoretical benefit for
evolvability is well documented.

While professional software developers who are familiar with service-based systems and
patterns could be fitting experiment subjects, we instead opted for more inexperienced
developers, that is, students. First, it is very difficult to convince a large number of software
professionals to spend two hours of their valuable time for free on seemingly meaningless
coding. And second, if the patterns’ advantages materialize even with inexperienced
developers that have little or no conscious knowledge of them, their effect on evolvability
must be substantial. However, while it is common to use students in software engineering

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 5/25

https://github.com/xJREB/research-modifiability-pattern-experiment
https://github.com/xJREB/research-modifiability-pattern-experiment
https://doi.org/10.5281/zenodo.3340971
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

CustomerSrv < NotificationSrv
A
WebUI —> OrderSrv
\ 4
ProductSrv invokes

Figure 1 Version #1 pre-experiment: initial architecture of non-pattern version.
Full-size K&l DOT: 10.7717/peerj-cs.213/fig-1

invokes
CustomerSrv < NotificationSrv [<€—
t A
WebUI E— OrderSrv
l l \ 4
CategorySrv WarehouseSrv (€ ProductSrv —

Figure 2 Version #1 post-experiment: final architecture of non-pattern version.
Full-size K&] DOTI: 10.7717/peerj-cs.213/fig-2

invokes
e CustomerSrv < NotificationSrv

publishes

=> {

|

> - OrderProcessSrv
WebUI OrderSrv - (Process Abstraction)

J

Kafka Broker
ProductSrvFacade 3 ProductSrv]
(Service Facade) (Decomposed Capability) :> ®

Figure 3 Version #2 pre-experiment: initial architecture of pattern version.
Full-size k&l DOL: 10.7717/peerj-cs.213/fig-3

Bogner et al. (2019), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.213 6/25

http://dx.doi.org/10.7717/peerj-cs.213/fig-1
http://dx.doi.org/10.7717/peerj-cs.213/fig-2
http://dx.doi.org/10.7717/peerj-cs.213/fig-3
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

invokes
e
publishes —>» CustomerSrv < NotificationSrv
A
subscribes
OrderProcessSrv
ol < (Process Abstraction)
Webul — PO ey > ProductSrv
£ Y
Kafka Broker
CategorySrv WarehouseSrv f-++---; > <

Figure 4 Version #2 post-experiment: final architecture of pattern version.
Full-size k&l DOTL: 10.7717/peerj-cs.213/fig-4

Table 1 List of applied patterns in system version #2.

Pattern name

Source Intended effect Task

Process abstraction

Service fagade

Decomposed capability

Event-driven messaging/
inversion of communications

Erl (2009) Details of the order process are abstracted in #1
composition controller; changes can be made in
central location (OrderProcessSrv)

Erl (2009) Shields the ProductSrv against all consumers; changes #2
to the interface only have to be addressed at the facade

Erl (2009) Large and incohesive ProductSrv is prepared for #2
future decomposition by internally isolating domain
concepts

Erl (2009) and ProductSrv publishes events instead of directly calling #3

Rotem-Gal-Oz (2012) other services; decoupling of producers and

consumers

experiments, one must be more careful when generalizing the results to the population of
all developers. On the plus side, students are often fairly homogeneous participants.
Finally, several studies have shown that using students instead of software professionals
may affect the results only marginally in a lot of cases (Host, Regnell ¢~ Wohlin, 2000;
Salman, Misirli & Juristo, 2015; Falessi et al., 2018).

Our experiment subjects therefore were Bachelor students (N = 69) that needed to
participate in an experiment as part of the “Introduction to Software Engineering” lecture
(mostly 2nd and 3rd semesters). Students could choose one of two experiments based on a
short description. Data collection was anonymous and experiment performance had no
influence on the students’ grades. Participating in the experiment without data collection
was also possible to pass the course. During experiment execution, students assigned

Bogner et al. (2019), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.213 7/25

http://dx.doi.org/10.7717/peerj-cs.213/fig-4
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 List of experiment tasks.

Task

Task description

#1

#2

#3

Adjust the web shop ordering process (customer credit rating check, minimum available number of products) and extend it with an
additional process step (sending of an email via the NotificationSrv).

Decompose the large ProductSrv into three smaller services: a ProductSrv to manage only product domain entities, a CategorySrv
to manage product categories, and a WarehouseSrv for product availability.

Implement a new process triggered in response to adding a new product to the database. The new process sends out emails and adds the
new product to a marketing database.

themselves randomly and unknowingly to one of the two groups by choosing a seat in the
PC pool room: either the non-pattern version #1, that is, the control group, or the
pattern version #2, that is, the treatment group. As experiment materials, students were
provided with a fully configured virtual machine in the university PC pool room. They
had documentation and task descriptions in both digital and printed form. They were
allowed to use internet search in case of issues. A web interface with automatic tests for
validating the completion of each of the three tasks was provided as well. Students were
advised to measure their own time per task with a stopwatch of their choosing.

Participants had to solve a total of three tasks that depended on each other (see Table 2). In
the first task, the ordering process of the web shop system should be adjusted (e.g., customer
credit rating check) and extended with an additional process step (sending of an email via
the NotificationSrv). Version #2 had been prepared with the Process Abstraction pattern
so that all changes had to be implemented in the OrderProcessSrv as opposed to in
three different services like in version #1. In the second task, the large ProductSrv had to be
decomposed into three smaller services: a ProductSrv to manage only product domain
entities, a CategorySrv to manage product categories, and a WarehouseSrv for product
availability. Version #2 incorporated the Decomposed Capability pattern to ease the
decomposition as well as the Service Fagade pattern that shielded the former ProductSrv
from consumers. In the final task, a new process in response to adding a new product to the
database should be implemented (sending out email and adding the new product to a
marketing database). Version #2 provided message-based communication via an Apache
Kafka broker that allowed publishing a NewProductEvent, which implements the patterns
Event-Driven Messaging and Inversion of Communications. Please refer to the folders
workspace-versionl/_exercises or workspace-version2/_exercises in our
GitHub repository (https://github.com/xJREB/research-modifiability-pattern-experiment)
for the complete task descriptions.

As response variables for our experiment, we analyzed effectiveness and efficiency
(duration per task). Effectiveness of a participant was measured as the percentage of the
three tasks he/she successfully completed within the 90 min, that is, 0%, 33%, 67%, or
100%. Efficiency was recorded in seconds or as not available if the task was not completed.
Median effectiveness per group was only calculated and tested for the total of all three
tasks. For mean efficiency, we additionally also analyzed and compared every individual
task to derive the effect per pattern. While these two response variables also depend on
the skill of the participants, they can characterize the systems’ evolvability if the two groups

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 8/25

https://github.com/xJREB/research-modifiability-pattern-experiment
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Pairs of Experiment Hypotheses (each in the form of an alternative hypothesis H,;; and its null hypotheses Hy;j, where i represents the
research goal identifier and j the counter for more than one hypothesis per goal; effectiveness: i = 1, efficiency: i = 2); E,, denotes the
effectiveness for version x; D, denotes the task durations for version x; D, ,, denotes the task durations for version x and task y.

Alternative hypothesis

Null hypothesis

Effectiveness

Efficiency
(task duration)

H;jq1: More tasks for the pattern version #2 of the system
can be completed within the given time than for the
non-pattern version #1:
median(E,,) > median(E,;)

Hi,:: It takes less time to complete task#1 for the pattern
version #2 of the system than for the non-pattern
version #1:
mean(D,; ;) < mean(D,; 4)

H;,,: It takes less time to complete task#2 for the pattern
version #2 of the system than for the non-pattern
version #1:
mean(D,, ;) < mean(Dy; 1)

Hj,3: It takes less time to complete task#3 for the pattern
version #2 of the system than for the non-pattern
version #1:
mean(D,,,3) < mean(Dyy,s3)

Hj,y: It takes less time to complete a task for the pattern
version #2 of the system than for the non-pattern
version #1:
mean(D,,) < mean(D,,)

Ho11: There is no difference in how many tasks can
be completed for both versions of the system:
median(E,,;) = median(E,,)

Hy,: There is no difference in the time it takes to
complete task#1 for both versions of the system:
mean(D,;,,1) = mean(Dy,,n)

Hy,,: There is no difference in the time it takes to
complete task#2 for both versions of the system:
mean(D,y,) = mean(D,;,12)

Hy,3: There is no difference in the time it takes to
complete task#3 for both versions of the system:
mean(D,; 3) = mean(D,; s3)

Hy,4: There is no difference in the time it takes to
complete a task for both versions of the system:
mean(D,,;) = mean(D,,)

are large enough and roughly equal in skill. The predictor variable was the group or
system version (i.e., control or treatment group). It was either #1 for the non-pattern
version or #2 for the pattern version.

To formalize our research objective, we constructed five experiment hypotheses H,;; and
their respective null hypotheses Hy;; where i denotes the research goal identifier and j
the counter if there is more than one hypothesis per goal (see Table 3). For effectiveness
(i = 1), we have one hypothesis (j = 1) while for efficiency (i = 2), we have four (1 < j < 4,
j € N), namely one per individual task and one for the complete set of tasks at once. Since
we have five hypotheses, this also means that we need Bonferroni correction for the
significance level of our hypothesis tests to account for the increased probability of type I
errors. The necessary significance level o therefore is calculated by dividing the desired
significance level by the number of hypotheses, that is, o = 0.05/5 = 0.01.

The experiment execution took place in the following way. To prepare participants for
the experiment, an introductory presentation was given on a separate day (45 min). A total
of 55 of the 69 students attended (~80%). In this session, the structure and procedure
of the experiment were explained. We also described the data collection and analysis
process. Furthermore, an introduction to the basic concepts of SOC and RESTful HTTP
services was given to ensure a common base level of knowledge. Lastly, the details of
the experiment workspace were presented, e.g. Ubuntu VM, Eclipse Integrated
Development Environment (IDE), directory structure, build scripts, task validation.

The actual experiment took place over the course of the week following the introductory
presentation in slots of 10-20 students. In such a slot (~2 h), there was first a short

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 9/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

introduction (5 min) explaining the procedure and agenda. Details of what would be
measured and what data would be collected via the post-experiment survey were
presented. We pointed out that experiment performance had absolutely no influence on
the grade. Data collection would be anonymous and participant IDs could not be linked to
student IDs. Following these explanations, we asked if there were any questions regarding
this process and if it was acceptable for everybody (verbal consent). We also specifically
pointed out the option to participate in the experiment without data collection.

After that, there was a familiarization period (15 min) during which students should get
comfortable with the workspace and the system by reading documentation and playing
around with the IDE and the build scripts. This period was followed by the actual task
execution with time measurement. Participants had 90 min to complete all three tasks.
A web-based evaluation application with automated tests was provided to check for
successful task completion. Participants recorded their own time with a stopwatch and
paused upon successful validation of a task via the evaluation Ul. An experiment
administrator was then notified to verify the completion and to document the duration.
The timer was then reset and the next task began. After solving all three tasks or after
90 min, participants finally filled out a short web-based survey with questions about the
perceived difficulty per task, personal information (e.g. course of study and semester),
and their self-reported experience with for example Java, service-based systems, and
patterns. Their participant ID and system version was also recorded to relate it to the task
durations. It was not possible to identify the student by name via the participant ID,
which guaranteed the anonymity of the results. Please refer to the repository for the full list
of questions. After completing this survey, participants finished the experiment slot and
were allowed to leave.

EXPERIMENT RESULTS

For the analysis, the documented task duration measurements per participant were first
combined with the exported survey results via the participant ID. We then divided
the resulting data set into the two groups (version #1 and version #2) and analyzed it with
descriptive statistics. Initially, we wanted to ensure that both versions had comparable
characteristics and experience, which is the case in most areas (see Table 4). On average,
group #1 with 36 participants and group #2 with 33 participants were of roughly the same
study program distribution and semester (~2.5). When comparing programming
experience and self-reported skill, group #2 seems to have been slightly more experienced.
More participants of group #1, however, attended the introductory presentation (~13%
points more), a factor that was correlated with effectiveness (Kendall’s tau: 0.346,
p-value: 0.0019). The standard deviation for most attributes was also similar in both groups
and fairly low in general (e.g. around or below 3.0 for most 10-point ordinal scale questions).
Therefore, the set of participants could be considered as sufficiently homogeneous. So all
in all, the two groups were similar enough to assume equal conditions for an effectiveness and
efficiency comparison with respect to the treatment, that is, the patterns.

With 1/3, median effectiveness was identical for both groups. Overall, 48 of 69
participants (~70%) were able to solve task #1, a total of 26 of these additionally solved task

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 10/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Group characteristics and self-reported experience (SD represents the standard deviation;
for experience questions based on the 10-point ordinal scale, 1 represents “not experienced” while
10 represents “very experienced”).

Group #1 Group #2
(no patterns) (patterns)
Participants 36 (52%) 33 (48%)
B.Sc. Business information systems 9 (25%) 7 (21%)
B.Sc. Computer science 4 (11%) 4 (12%)
B.Sc. Software engineering 22 (61%) 20 (61%)
Other study programs 1 (0.03%) 2 (0.06%)
Introduction attendance 31 (86%) 24 (73%)
Semesters Mean 2.36 2.45
SD 1.15 1.09
Years of programming experience Mean 2.13 2.70
SD 1.80 2.63
Java experience (1-10) Mean 6.03 6.55
SD 2.36 2.18
Web development experience (1-10) Mean 3.61 4.30
SD 2.86 3.19
Service-based systems experience (1-10) Mean 1.58 2.42
SD 1.30 2.68
Design patterns experience (1-10) Mean 3.94 461
SD 2.93 3.16
Service-based patterns experience (1-10) Mean 1.86 2.85
SD 1.55 2.48
All experience-related attributes (1-10) Mean 3.41 4.15

#2 (~38%), and only 17 participants finished all three tasks (~25%). Roughly 30% were not
able to solve any task, namely 10 out of 36 for group #1 (27.8%) and 11 out of 33 for
group #2 (33.3%). The self-reported difficulty/complexity per task (1-10) was also fairly
similar for both groups. The only notable exception for this was task #3 which was
perceived as 2.61 points less difficult by the pattern group #2 (6.15 vs 3.54 points). When
filtering only for the 17 participants who actually finished this task, the difference is nearly
identical (2.64 points), even though the estimated difficulty is lower (4.86 vs 2.22).

When analyzing participant efficiency, that is, duration for task completion, we observed
that the mean duration per completed task for the total of all three tasks was about 12%
lower for the pattern group #2 (00:32:45 vs 00:28:50). The analysis per individual task
revealed that this is caused by task #2 and #3: group #2 needed on average ~22% less time for
task #2 and ~51% for task #3 respectively. Task #1, on the other hand, took group #2 ~15%
more time to complete. Table 5 lists the detailed results for this. The efficiency difference
can also be conveniently observed in a boxplot that shows the statistical distribution for task
duration (in seconds) grouped by system version and task number (see Fig. 5).

The next step was hypothesis testing, that is, analyzing if the differences between the
groups are statistically significant so that we can reject the null hypotheses. To prepare

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 11/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Result measures per group (SD represents the standard deviation; for difficulty questions
based on the 10-point ordinal scale, 1 represents “not difficult” while 10 represents “very difficult”).

Group #1 Group #2
(no patterns) (patterns)

Participants that solved task#1 26 (72%) 22 (67%)
Participants that solved task#2 15 (42%) 11 (33%)
Participants that solved task#3 7 (19%) 10 (30%)
Effectiveness Median 1/3 1/3

1st Quartile 0/3 0/3

3rd Quartile 2/3 3/3
Reported difficulty for task#1 (1-10) Mean 3.52 3.35

SD 2.26 1.92
Reported difficulty for task#2 (1-10) Mean 5.60 5.43

SD 2.63 291
Reported difficulty for task#3 (1-10) Mean 6.15 3.54

SD 2.60 2.82
Duration per individual task Mean 00:32:45 (1,965 s) 00:28:50 (1,730 s)

SD 00:17:09 (1,029 s) 00:19:11 (1,151 s)
Duration for task#1 Mean 00:30:32 (1,832 s) 00:35:10 (2,110 s)

SD 00:18:41 (1,121 s) 00:22:03 (1,323 s)
Duration for task#2 Mean 00:39:41 (2,381 s) 00:30:47 (1,847 s)

SD 00:15:38 (938 s) 00:12:27 (747 s)
Duration for task#3 Mean 00:26:07 (1,567 s) 00:12:45 (765 s)

SD 00:09:23 (563 s) 00:04:32 (272 s)
Duration for All three tasks (in total) Mean 01:15:30 (4,530 s) 01:03:39 (3,819 s)

SD 00:10:20 (620 s) 00:18:18 (1,098 s)

the selection of a suitable statistical test, we first used the Shapiro-Wilk test to check if our
samples were non-normally distributed. For all samples, the p-value was substantially
smaller than 0.05, so we had to reject the null hypothesis that our data came from a normal
distribution. We therefore needed a non-parametric test that could handle non-normal
distributions. The Mann-Whitney U test (also known as Wilcoxon-Mann-Whitney test)
fulfills this requirement. It checks the null hypothesis that the probability is equal that

a random value from one group is less than or greater than a random value from another
group. We used an exact implementation correcting for ties that were likely to happen
for the effectiveness test (only four different values: 0/3; 1/3; 2/3; 3/3).

Since median effectiveness of both groups is identical (1/3), the resulting p-value for the
hypothesis test is much too large (0.5903). This means we cannot reject Hy;; and therefore
have no support for H;;; that more exercises can be completed for pattern version #2.
For efficiency, we first tested all three tasks at once (H;,4) where we identified a mean
difference of about 12%. The resulting p-value of 0.0496 is barely below the 0.05 level, but
since we need a significance level of 0.01 due to multiple hypotheses, this is still too
large. We therefore cannot confidently reject our null hypothesis Hy,4, that is, we cannot
support Hj,4 that the pattern group #2 was overall more efficient on a statistically

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 12/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

5000 ‘
: %
4000 1 o
g
3000 @
>
2000 1832 2110 g
1000 2
3
5000
b "
® 4000 B
c ¢| Task Number
< 3000 % E3#1: Process Abstraction
o 2381 ®| E3#2: Service Facade
‘é’ 2000 1847 8 E3 #3: Event-Driven Messaging
S &
A 1000
5000 g
T
4000 g
1
3000 g
3
2000 =
1567 @
i
1000 765 E— S
«Q«

#1 (no patterns)
Group / Version

#2 (patterns)

Figure 5 Boxplot comparison of the duration per version and task.
Full-size 4] DOT: 10.7717/peerj-cs.213/fig-5

significant level. When performing the same test for the three tasks individually, the
resulting p-values are 0.741 (task#1), 0.082 (task#2), and 0.0006 (task#3) respectively.
This means that with our Bonferroni-corrected significance level of p < 0.01 (desired
significance level divided by the number of hypotheses = o = 0.05/5 = 0.01) we could only
reject Hy,; and identify support for Hi,; (task#3, patterns: Event-Driven Messaging/
Inversion of Communications). A post-hoc power analysis for our only successful
hypothesis test (i.e. the probability that the test correctly rejected the null hypothesis)
revealed that the statistical power is sufficient (0.931). As pointed out, all other four null
hypotheses (Ho11, Hoz1, Hoza> Hoza) could not be rejected.

METRIC ANALYSIS

For a second comparison of the two system versions, we chose and collected measurements
for nine different maintainability metrics (see Table 6) related to structural design
properties such as size, complexity, and coupling from the final systems (post-experiment
optimal solutions, see Figs. 2 and 4). Some of these metrics are pretty simple (e.g. # of
Services or Lines of code (LOC)). Since a number of more sophisticated maintainability
metrics specifically designed for service orientation have been suggested in scientific
literature (Bogner, Wagner & Zimmermann, 2017), we also chose some of these

(e.g. service interface data cohesion (SIDC) or absolute dependence of the service (ADS)).
All metrics (except for # of Services) were collected per service and then aggregated to
the system level with aggregation functions such as SUM, MEAN, or MAX. Before we

Bogner et al. (2019), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.213 13/25

http://dx.doi.org/10.7717/peerj-cs.213/fig-5
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 List of the nine selected maintainability metrics to analyze both versions.

Metric name Design property Source

of services Size -

Lines of code (LOC) Size -

Weighted service interface count (WSIC) Size Hirzalla, Cleland-Huang &
Arsanjani (2009)

LOC/WSIC Granularity -

Cyclomatic complexity (CC) Complexity McCabe (1976)

Service interface data cohesion (SIDC) Cohesion Perepletchikov (2009)

Absolute dependence of the service (ADS) Coupling Rud, Schmietendorf ¢
Dumke (2006)

Relaxed ADS Coupling -

Absolute importance of the service (AIS) Coupling Rud, Schmietendorf ¢

Dumke (2006)

describe the detailed metric results, we briefly present the selected metrics, explain
our rationale for choosing them, and point out how they were collected.

Metric definitions

In the area of size and granularity, we selected four metrics. The premise with these
metrics is that a smaller system with appropriate service granularity (not too many
services, not too large services) will be easier to understand and maintain. The first one was
of Services, which already is a proxy for system size and therefore does not need to

be aggregated. So, if we assume unchanged granularity, fewer services are generally easier
to grasp and maintain. We manually derived # of Services from the final architecture
diagrams. In both versions, the WebUI was counted as a service while in the pattern
version #2, the Kafka broker was not counted as a service, as it does not contain custom
code and is an infrastructure component.

As a second metric, we selected the prevalent LOC metric that we collected for each
service via the static analyzer SonarQube (https://www.sonarqube.org). We then created
system-level LOC aggregates with SUM, MEAN, MEDIAN, and MAX. Since LOC is
sometimes seen as controversial (e.g. if several programming languages are involved), we
also selected a volume metric specifically designed for service orientation, namely the
weighted service interface count (WSIC) by Hirzalla, Cleland-Huang & Arsanjani (2009).
WSIC represents the count of publicly available operations in a service interface with
possible weights for different types of operations (e.g. synchronous and asynchronous).
We used the standard weight of 1, which is basically the same as # of Operations. Values for
WSIC were automatically derived from the existing OpenAPI (https://github.com/OAI/
OpenAPISpecification) files with a self-developed analysis tool. Like LOC, WSIC was also
aggregated with SUM, MEAN, MEDIAN, and MAX.

To gain further granularity-related insights in addition to the means and medians of our
two volume metrics, we also calculated their ratio, that is, LOC/WSIC. For a given service,
this represents the number of LOCs that are on average necessary to provide a single

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 14/25

https://www.sonarqube.org
https://github.com/OAI/OpenAPISpecification
https://github.com/OAI/OpenAPISpecification
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

operation. Larger values for LOC/WSIC mean a service has large and potentially complex
operations. This metric was aggregated with MEAN, MEDIAN, and MAX.

As a measure for complexity, we selected cyclomatic complexity (CC) from McCabe
(1976) as a traditional source code metric. While some suggestions for service-based
complexity metrics like response for operation (Perepletchikov et al., 2007) or Message
Entropy (Mateos et al., 2017) exist, tool support for their collection is not available and
they are hard to calculate manually. Despite its criticisms (Ostberg ¢» Wagner, 2014),
we therefore relied on the widely used CC metric that was gathered for each service via
SonarQube. We then subsequently aggregated the values with MEAN, MEDIAN, and
MAX. Lower values for CC suggest that a service is easier to understand and maintain.

In the context of cohesion, we chose the SIDC metric proposed by Perepletchikov
(2009). SIDC rates the cohesion of a service interface in percent based on the input and
response parameter data types of its operations. If a service interface operates on the same
or only a small set of data abstractions (e.g., CRUD operations for a Customer entity),
the values for SIDC will be closer to 100% and the service will be easier to analyze and
change. We used the already mentioned OpenAPI analysis tool to automatically calculate
the percentage values for SIDC. These values were then aggregated with MEAN, MEDIAN,
and MIN (as lower values are worse).

The last maintainability-related design property that we wanted to measure was coupling.
In the service-oriented space, “loose coupling” is a prevalent theme aiming to reduce the
number and strength of service dependencies and therefore preventing or mitigating ripple
effects on changes (Pautasso ¢ Wilde, 2009). We therefore chose three metrics to analyze the
degree of coupling in both versions, where lower values mean less coupling and therefore
increased maintainability. All coupling metrics were manually derived from the final
architecture diagrams that also include the dependencies between services. Moreover, the
same aggregations were used for all of them, namely MEAN, MEDIAN, and MAX.

First, we selected the ADS metric proposed by Rud, Schmietendorf & Dumke (2006). For
a given service, ADS represents the number of other services that this service depends on,
that is, of which it invokes at least one operation. For pattern version #2, dependencies
to the Kafka broker were counted as well. Since ADS treats every static dependency exactly
in the same way, we also collected values for an adjusted variant of ADS that respects
looser types of coupling. In that sense, Relaxed ADS works like ADS, except that
dependencies to a Service Facade or the Kafka broker were counted with 0.5 instead of 1.
The rationale for this was that these two patterns are introduced as intermediaries to
reduce coupling. As a consequence, dependencies to them should not be weighted in
the same way as direct invocations of services. In version #1 of the system, the values for
Relaxed ADS are therefore exactly the same as for ADS. Only in the pattern version #2, the
values for the two variants differ.

The third and last coupling metric, also proposed by Rud, Schmietendorf ¢» Dumke
(2006), is complementary to ADS, namely the metric absolute importance of the service
(AIS). For a given service, AIS represents the number of other services that have a
dependency to this service, that is, that invoke at least one of its operations. Since the
invocation origin is not really important, we did not gather a Relaxed AIS variant.

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 15/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

Table 7 System-level metric results per version (Change in % refers to the change of the metric value
from V1 to V2; a positive percentage means V1 is better, a negative one means V2 is better; in cases
with a change of at least 15%, the better version is marked with a colored background).

Metric Aggregate Version #1 Version #2 Change in %
(no patterns) (patterns)
of services - 9 28.6
LOC SUM 3,303 29.3
MEAN 365 367 0.5
MEDIAN 324 362 11.7
MAX 591 668 13.0
wsic SuM B - 169
MEAN 5.33 5.88 10.2
MEDIAN 5 5 0.0
MAX 12 333
LOC/WSIC MEAN 105.77 33.7
MEDIAN 77.33 71.73 -7.2
MAX _ 373.00 2319
CC MEAN 48.57 48.44 -0.3
MEDIAN 50.00 48.00 —4.0
MAX 93 100 7.5
SIDC MEAN 0.370 0.374 -1.2
MEDIAN 0.40 0.40 0.0
MIN 0.16 0.16 0.0
ADS MEAN 1.57 1.56 -1.0
MEDIAN 1 1 0.0
MAX 5 -20.0
Relaxed ADS MEAN 1.57 -18.7
MEDIAN 1 -50.0
MAX 5 -30.0
AIS MEAN 1.57 -222
MEDIAN 1 1 0.0
MAX 3 3 0.0

Metric results
To compare the two system versions, we only present the aggregated system-level metrics
in this paper (see Table 7). For a detailed comparison of the underlying service-level
metrics, please refer to the metric evaluation spreadsheet in our repository (https://github.
com/xJREB/researchmodifiability-pattern-experiment/blob/master/_results/metric-
analysis.xlsx) that includes the measurements for each service.

When comparing the system-level metrics for size, we immediately see that pattern
version #2 is larger. It has two more services (OrderProcessSrv and

Bogner et al. (2019), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.213 16/25

https://github.com/xJREB/researchmodifiability-pattern-experiment/blob/master/_results/metric-analysis.xlsx
https://github.com/xJREB/researchmodifiability-pattern-experiment/blob/master/_results/metric-analysis.xlsx
https://github.com/xJREB/researchmodifiability-pattern-experiment/blob/master/_results/metric-analysis.xlsx
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

ProductSrvFagade) and therefore consists of ~29% more LOC and ~47% more
operations. Even though the Kafka broker is also new in version #2, it is not counted as a
service. While MEAN and MEDIAN for the size metrics are only slightly worse or stay
roughly the same in version #2, the MAX value for WSIC increases by ~33% (from nine to
12 operations). This is due to the newly introduced ProductSrvFacade that relays calls to
the ProductSrv, CategorySrv, and WarehouseSrv. Lastly, the introduction of the
OrderProcessSrv in version #2 impacted the LOC/WSIC ratio. While the MEDIAN is
slightly better for version #2 (~7%), both the MEAN value (~34%) and the MAX value
(~232%) are worse. The reason for this is that the OrderProcessSrv provides only a
single operation while simultaneously consisting of slightly above average LOC.

For both complexity and cohesion, our chosen metrics do not show much differences
between the two versions. CC aggregates are very similar, with the only notable difference
being a slightly larger MAX value (~8%) for version #2. This is caused by adding the messaging
functionality to the NotificationSrv. Aggregates for SIDC are even more similar, which
suggests that the patterns at hand do not influence service cohesion all that much.

The only design property that seems slightly better in pattern version #2 is coupling.
While the MEAN and MEDIAN aggregates of ADS stay the same in both version, the MAX
value in version #2 has been reduced by 20%: the ProductSrvFagade shields the services
behind it so that the WebUI has one dependency less (four instead of five). If we treat
looser forms of coupling differently, version #2 improves even further. For Relaxed ADS,
all aggregates are better in the pattern version (MEAN by ~19%, MEDIAN by 50%,
and MAX by 30%), because the Kafka broker and ProductSrvFagade reduce the weight
of service dependencies. Finally, even though the MEDIAN and MAX aggregates for
AIS are the same in both versions, the MEAN value is improved by ~22% in version #2.
This is caused by the Event-Driven Messaging/Inversion of Communications patterns.
The Kafka broker does not actively call services, but services have to publish or subscribe to
it. Therefore, the SUM values for ADS and AIS would also be different in version #2, even
though they would be the same in version #1.

DISCUSSION

From the experiment results, we could not derive support for the majority of our hypotheses
that service-based patterns had a positive impact on participant effectiveness and efficiency.
The mean difference in duration was only significant for task #3 in isolation. We offer
three main interpretations to explain these results. One straightforward possibility is that the
patterns of task #1 (Process Abstraction) and task #2 (Service Fagade and Decomposed
Capability) were simply not effective enough to enhance the modifiability of the system
under test. Their theoretical benefit for the chosen evolution scenario did not (or only
partially) translate to a practical setting. Only Event-Driven Messaging/Inversion of
Communications from task #3 led to a significant advantage for the system’s evolvability.
While this seems plausible at first sight and our chosen patterns may certainly differ in their
effectiveness, we believe that our second and third interpretations are more likely.
Another explanation for the results may be that the effect of familiarization and
experience was stronger for the pattern version #2. As they progressed through the tasks,

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 17/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

participants naturally grew more accustomed to the system and workspace environment.
Since the pattern version #2 exhibited a higher base complexity (more services, more
inter-service communication, more build scripts to start before task validation),
participants of this group were initially slowed down more than the control group.
Over the course of the experiment, they gradually adjusted to this so that the effectiveness
of the chosen patterns for the evolution scenario could unfold (slightly in task#2 and fully
in task#3). This effect could have been weakened by randomizing the order of tasks

per participant. Unfortunately, this was not possible because tasks depended on each other.

We also offer a possible third explanation in conjunction with the familiarization
effect. The patterns’ effect on modifiability seems to have been influenced by whether
participants had conscious knowledge of and experience with patterns beforehand.
When we analyzed existing correlations between effectiveness and self-reported
experience-related factors, we observed that both knowledge of general design patterns as
well as service-oriented patterns was more strongly correlated with effectiveness in the
pattern group #2 than in group #1: about 19% more for general patterns (Kendall’s tau:
0.485 vs 0.579) and about 242% more for service-oriented ones (r-values: 0.093 vs
0.318). Years of programming experience, for example, was similarly correlated with
effectiveness in both groups (r-values: 0.509 vs 0.497). So using students instead of
experienced professionals who have worked with patterns before seems to have hurt
treatment group #2 more. The potential modifiability-related benefit of a pattern may be
lessened or even negated by its complexity and impact on understandability, if the
participant is not familiar with the pattern. Potential support for this can be found by
narrowing down the sample for both groups to only the best participants. When we filter
for only the 26 students that solved at least task #1 and task #2 (effectiveness > 67%),
the mean efficiency difference increases: instead of ~12%, participants of pattern
group #2 now needed ~31% less time per task.

Opverall, the results suggest that the theoretical evolvability-related advantage of
service-oriented patterns is difficult to replicate in controlled experiments: familiarity with
the system and experience with the selected patterns seem to have an impact on the
patterns’ effectiveness. For inexperienced developers unfamiliar with the system, the
additional complexity introduced by the patterns seems to reduce or even outweigh the
theoretical positive effect on modifiability. Implications of such a conclusion could be
that appropriate documentation of used service-oriented patterns as well as thorough
pattern-focused initial training of new developers become all the more important to ensure
a long-term and sustainable effect of patterns on software evolvability.

With respect to the metric analysis, we observed that the pattern version #2 is worse
in the area of size and granularity and better for coupling. Our chosen complexity and
cohesion metrics are not impacted by the patterns. When counting only changes in metric
values of at least 15%, version #1 is superior for six size and granularity aggregates (# of
Services, LOCsyp, WSICsuas WSICaiax, LOC/WSICyran, and LOC/WSICyax), while
version #2 is better for five coupling aggregates (ADSy;4x, Relaxed ADSypan, Relaxed
ADSpeprans Relaxed ADSyax, and AISypan). However, three of these five improvement
areas for version #2 are aggregates of Relaxed ADS, a metric that we specifically

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 18/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

constructed for the loose coupling nature of the used patterns. Without Relaxed ADS,
the pattern version would only be significantly better for two coupling aggregates (ADSyax
and AISyEan)-

All in all, the comparison of structural metrics showed no decisive maintainability
improvements in the pattern version, which seems to be in line with the experiment
results. The increased system size and slightly worsened granularity in version #2 may
support our interpretation that it took longer in this group until the familiarization effect
kicked in. More services and operations meant that participants were potentially under
higher cognitive load and required more effort to get familiar with the system. Lastly, the
partially improved coupling measurements in the pattern version could explain why
participants in this group required less time for task#2 and especially task#3: these tasks
relied on the patterns Service Fagade and Event-Driven Messaging, which are both related
to decoupling.

THREATS TO VALIDITY

Threats to validity have to be examined in several areas of this empirical study. With
respect to construct validity, our operationalized experiment measure (namely the time
necessary to implement a feature) seems valid to represent the construct in a practical
real-world setting. Efficiency is one of the most used measures for software engineering
experiments and, in contrast to maintainability metrics, it is not a structural approximation
of this quality attribute. Effectiveness, that is, the degree to which participants solved
all tasks within the given time frame, is a similarly popular measure in software
development, even though efficiency is more relevant in a real-world industry setting. Most
often, it is not the question, if something can be implemented, but how long it will take.
Lastly, the results of the metric analysis rely on the maintainability prediction quality of
the chosen metrics. Several of these metrics (e.g. LOC or CC) are well-known and have
been extensively studied, but especially some of the younger service-oriented metrics have
not been evaluated in or accepted by large-scale industry environments. So, while the
chosen design properties seem very fitting for a service-oriented context, the metrics
selected to represent them may be of differing quality. Similarly, only a limited number of
metrics was analyzed and there is always the possibility for more or different metrics.

Internal validity is concerned with how much the treatment was actually responsible
for the observed effect and if there were unknown factors that influenced the results.
During the experiment discussion, we already mentioned the observed impact of the
participants’ pattern knowledge on the effective modifiability of the patterns. A possible
solution to this could have been to only accept participants with a base-level of pattern
experience or to include a small lecture on service-oriented patterns in the introductory
presentation. We also already described the familiarization effect for later tasks, which
makes it harder to analyze the effectiveness of each individual pattern. Task randomization
as a solution to this was not possible because the task order was important in the
constructed evolution scenarios.

Furthermore, participants were forced to use the provided experiment workspace via a
virtual machine. While most students should be somewhat familiar with Eclipse, their

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 19/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

preferred IDE, OS, or build tool may be different from the provided environment. This
could have hindered their development speed. We have to assume that this effect was
similar for each group and task. Moreover, participants were allowed to ask questions,
if they were not related to the actual coding, but to the experiment environment (e.g., IDE,
build tool, and evaluation UT).

A last potential threat in this area is the general coding ability of participants that
may tamper with the results: students that are very slow/fast in general work with similar
speed regardless of the group. Since participants only worked on one version in our
experiment, an uneven distribution of very slow/fast students could have affected the
groups’ mean efficiency. While our population of 69 has a smaller risk to be influenced by
this than for example, 20 participants and our post-experiment survey did not reveal major
experience differences between the groups, the self-reported nature of the comparison
still leaves some room for issues. Possible solutions could have been to conduct a pilot
evaluation study with the participants to divide them into two groups of similar skill or to
let participants work on tasks from both groups in a rotating manner. Both solutions were
not used because of time and effort constraints.

Concerning the metric analysis, we relied on the correctness of the collected measurements.
More complex metrics were gathered automatically with tool support while simple metrics
were manually derived (e.g. from architecture diagrams) and double-checked across
researchers. Even though it is not very likely, there still remains the small possibility of
incorrect metric values that may have clouded the analysis.

External validity refers to the generalizability of the results to the target population and
setting. While the usage of students may be a valid proxy for the desired target population
in many cases, our experiment was very challenging for Bachelor students. Only ~25%
solved all three tasks and ~30% could not solve any task. We also hypothesize that
the missing degree of pattern experience influenced the treatment group’s effectiveness and
efficiency. Therefore, we expect that a replication with experienced software professionals
from industry would yield different results. However, such a replication with a
sufficient number of participants is extremely difficult to organize.

We created both versions of the web shop system as close to the real world as possible.
Nonetheless, controlled experiment tasks are still inherently of a somewhat artificial nature
with the potential for subjective bias. The experiment results are also bound to the
used programming language (Java) and service-based communication style (RESTful
HTTP). Moreover, we designed the tasks with the intuitive feeling that the pattern version
#2 might be faster to change, because the patterns are perfectly suited for the changes
at hand. The benefit of a pattern will always heavily depend on the specifics of the
evolution scenario that is performed. In conjunction with this, developers are usually
decently familiar with the system that they extend. So, in a real world software
maintenance scenario, the benefits of modifiability mechanisms and patterns often
manifest over a long period of time with increasing developer familiarity with the system.

The artificial construction of the two system versions may also have impacted the
reliability of the metric-based analysis. After all, we evaluated the internal quality
of artifacts that were created by ourselves, which leaves possibilities for researcher bias.

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 20/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

To mitigate these threats, metric collection was performed by external research assistants
(see “Acknowledgments”) and the final set of metrics was not known during the
system construction period. Nonetheless, using several existing industry or open source
systems for the metric-based analysis of patterns would have provided more objective
results. In the case of our study, however, the goal of the evaluation with metrics was to
provide a second perspective on the two experiment system versions.

Lastly, one must be very careful to generalize from the results of four patterns, a total
of 69 student participants, and nine metrics to all patterns and software developers.
The controlled experiment presents first empirical insights for the modifiability of selected
service-oriented patterns with inexperienced human participants, while the metric
study provides additional structural insights that aim to further the understanding of the
patterns’ effects. However, many more similar studies should follow to either support or
reject the conclusions of this research.

LESSONS LEARNED FROM THE EXPERIMENT

We experienced a number of limitations with our experiment design that hindered our
means for analysis and interpretation. To aid future controlled experiments in the area of
design patterns’ impact on modifiability and to prevent researchers from repeating the
same mistakes, we documented some lessons learned. First, tasks should not depend on
each other. This allows to randomize task order per participant to lessen the
familiarization effect and analyze the impact of individual patterns. Furthermore, you can
then set fixed maximum durations per task which ensures participants work on all tasks.
This may obviously decrease the overall number of solved tasks though, especially if
they are difficult.

Another suggestion is to conduct a pilot experiment with similar tasks to rate participants.
This rating can then be used to randomly draft individuals to ensure similarly skilled
groups. As a less time-consuming alternative, a survey with self-reported skill can be used.
If a pre-experiment study is not possible, tasks could be designed to allow participants to
work on both versions of the system in alternating fashion. An even number of tasks
should be chosen in this case.

Lastly, it is strongly advised to ensure participants’ familiarity with the patterns.
Otherwise their effect will be reduced. In combination with this, the most realistic software
maintenance/evolution scenario requires that participants are already familiar with the
system to a certain degree. This could be achieved by using an existing system and its
developers. A second version would need to be constructed though. If no fitting existing
system is identified and time allows it, a long-term familiarization period with artificial
systems could be used before the actual experiment.

CONCLUSION

To analyze the impact of service-oriented design patterns on software evolvability, we
conducted a controlled experiment with 69 Bachelor students. Participants had to change
and extend a service-based web shop system in two functionally equivalent versions
over the course of three tasks. We measured effectiveness and efficiency per group.

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 21/25

http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

While median effectiveness was the same for both groups (1/3), we saw differences for the
mean efficiency, that is, mean duration per task. Participants in the treatment group
with patterns were about 12% faster (00:32:45 vs 00:28:50), but due to Bonferroni
correction not at a statistically significant level (p-value: 0.0496). When analyzing each
individual task, we found only the group difference for task #3 (pattern: Event-Driven
Messaging) to be of a significant nature (p-value: 0.0006). Here, participants in the
treatment group needed about 51% less time.

During the subsequent analysis of the two system versions with nine maintainability
metrics, the pattern version #2 exhibited worse measurements in the area of size and
granularity and better measurements for coupling, even though the most improved
coupling metric was specifically designed for the patterns’ type of dependency (Relaxed
ADS). Complexity as well as cohesion measurements were similar between the two
versions. Overall, we did not observe decisive maintainability metric improvements in the
pattern version, which seems to be in line with the experiment results.

Our interpretation of these results is that we have no clear indication that three of the
four selected service-based patterns were beneficial for evolvability. We theorize, however,
that the additional volume introduced by the patterns hindered participants to leverage
their modifiability-related benefits at first, which seems to be supported by the size
and granularity metrics. Over the course of the experiment, participants became more and
more familiar with the system and the patterns, which allowed the treatment group to geta
slight edge in task #2 and finally produced full statistical significance in task #3. The
implications of these results are that documentation and training of used service-based
patterns should not be neglected in software maintenance and evolution scenarios.

With respect to possible future work, we already mentioned the lack of empirical
quantitative research on service-oriented patterns and QAs (in our case evolvability). It is
therefore necessary that future research provides additional support in this area. Many
patterns for SOA and also some for Microservices are available and one study can only
cover so many of them. Moreover, additional research could also aim to confirm and
quantify the impact of developers’ pattern experience on the effectiveness of the patterns.
Additionally, the metric-based analysis of patterns could be extended to existing industry
or open source systems to mitigate the construction bias. As an alternative, several
practitioners or external researchers could implement systems with these patterns to
allow for a more objective analysis. To support such endeavors and to enable potential
replication studies, we shared all artifacts related to the experiment and metric analysis on
GitHub (https://github.com/xJREB/researchmodifiability-pattern-experiment) and
Zenodo (DOI 10.5281/zenodo.3340971) (source code, task descriptions, survey questions,
result data sets, analysis script).

ACKNOWLEDGEMENTS

We kindly thank Daniel Graziotin from the University of Stuttgart as well as
Maximilian Jager from the University of Mannheim for the fruitful discussions about
our paper and specifically about the used statistical methods. Furthermore, we thank
Aretina Jazzolino, Philipp Meyer, and Daniel Quack (all from the University of Stuttgart)

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 22/25

https://github.com/xJREB/researchmodifiability-pattern-experiment
https://doi.org/10.5281/zenodo.3340971
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

for their diligent support with the metric analysis. Lastly, we are very grateful for the
constructive and detailed feedback provided by our reviewers.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was funded by the Ministry of Science of Baden-Wiirttemberg, Germany, for the
doctoral programme “Services Computing.” The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Ministry of Science of Baden-Wiirttemberg, Germany.

Competing Interests
Justus Bogner is not only a PhD student, but also a software engineer at DXC Technology.
Stefan Wagner and Alfred Zimmermann have no potential competing interests.

Author Contributions

e Justus Bogner conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper,
approved the final draft.

e Stefan Wagner conceived and designed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the
final draft.

o Alfred Zimmermann conceived and designed the experiments, authored or reviewed
drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data is available at Zenodo:

Bogner, Justus. (2019). Data and Analysis Artifacts for Service-Based Evolvability Patterns
(Experiment and Metrics) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3340972.

REFERENCES

Alexander C, Ishikawa S, Silverstein M. 1977. A pattern language: towns, buildings, construction.
New York: Oxford University Press.

Ali M, Elish MO. 2013. A comparative literature survey of design patterns impact on
software quality. In: 2013 International Conference on Information Science and Applications
(ICISA). Piscataway: IEEE.

Bogner J, Wagner S, Zimmermann A. 2017. Automatically measuring the maintainability of
service- and microservice-based systems. In: Proceedings of the 27th International Workshop on
Software Measurement and 12th International Conference on Software Process and Product
Measurement on—IWSM Mensura’l7. New York: ACM Press.

Bogner et al. (2019), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.213 23/25

http://doi.org/10.5281/zenodo.3340972
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

Bogner J, Wagner S, Zimmermann A. 2019. Using architectural modifiability tactics to examine
evolution qualities of service- and microservice-based systems. SICS Software-Intensive
Cyber-Physical Systems 34(2-3):141-149 DOI 10.1007/s00450-019-00402-z.

Bogner J, Zimmermann A, Wagner S. 2018. Analyzing the relevance of SOA patterns for
microservice-based systems. In: Proceedings of the 10th Central European Workshop on Services
and their Composition (ZEUS’18). Dresden: CEUR-WS.org.

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. 1996. Pattern-oriented software
architecture: a system of patterns. Chichester: Wiley Publishing, 476.

Daigneau R. 2011. Service design patterns: fundamental design solutions for SOAP/WSDL and
RESTful web services. Upper Saddle River: Addison-Wesley.

Erl T. 2005. Service-oriented architecture: concepts, technology, and design. Upper Saddle River:
Prentice Hall PTR.

Erl T. 2009. SOA design patterns. Boston: Pearson Education.

Erl T, Carlyle B, Pautasso C, Balasubramanian R. 2012. SOA with REST: principles, patterns &
constraints for building enterprise solutions with REST. Upper Saddle River: Pearson Education.

Falessi D, Juristo N, Wohlin C, Turhan B, Miinch J, Jedlitschka A, Oivo M. 2018. Empirical
software engineering experts on the use of students and professionals in experiments. Empirical
Software Engineering 23(1):452-489 DOI 10.1007/s10664-017-9523-3.

Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P. 2014. Cloud computing patterns.
Vienna: Springer.

Fowler M. 2002. Patterns of enterprise application architecture. Boston: Pearson Education.

Fowler M. 2015. Microservices resource guide. Available at http://martinfowler.com/microservices.

Galster M, Avgeriou P. 2012. Qualitative analysis of the impact of SOA patterns on quality
attributes. In: 2012 12th International Conference on Quality Software. Piscataway: IEEE.

Gamma E, Helm R, Johnson R, Vlissides J. 1994. Design patterns: elements of reusable
object-oriented software. Boston: Addison-Wesley, 395.

Garzas J, Garcia F, Piattini M. 2009. Do rules and patterns affect design maintainability?
Journal of Computer Science and Technology 24(2):262-272 DOI 10.1007/s11390-009-9222-7.

Hegedas P, Ban D, Ferenc R, Gyimothy T. 2012. Myth or reality? Analyzing the effect of design
patterns on software maintainability. In: Kim T-h, Ramos C, Kim H-k, Kiumi A, Mohammed S,
Slezak D, eds. Communications in Computer and Information Science. Berlin, Heidelberg:
Springer, 138-145.

Hirzalla M, Cleland-Huang J, Arsanjani A. 2009. A metrics suite for evaluating flexibility and
complexity in service oriented architectures. In: International Conference on Service-Oriented
Computing Workshops - ICSOCW’09. Vol. 4749. Berlin, Heidelberg: Springer, 41-52.

Hohpe G, Woolf B. 2003. Enterprise integration patterns: designing, building, and deploying
messaging solutions. Boston: Addison-Wesley Longman Publishing Co., Inc.

Host M, Regnell B, Wohlin C. 2000. Using students as subjects—a comparative study of students
and professionals in lead-time impact assessment. Empirical Software Engineering 5(3):201-214
DOI 10.1023/A:1026586415054.

International Organization For Standardization. 2011. ISO/IEC 25010—systems and software
engineering—systems and software quality requirements and evaluation (SQuaRE)—system and
software quality models. System and Software Quality Models. Vol. 2. Available at https://www.
iso.org/standard/35733.html.

Jedlitschka A, Ciolkowski M, Pfahl D. 2008. Reporting experiments in software engineering.
In: Guide to Advanced Empirical Software Engineering. London: Springer, 201-228.

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 24/25

http://dx.doi.org/10.1007/s00450-019-00402-z
http://dx.doi.org/10.1007/s10664-017-9523-3
http://martinfowler.com/microservices
http://dx.doi.org/10.1007/s11390-009-9222-7
http://dx.doi.org/10.1023/A:1026586415054
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

PeerJ Computer Science

Kassab M, El-Boussaidi G, Mili H. 2012. A quantitative evaluation of the impact of architectural
patterns on quality requirements. In: Lee R, ed. Software Engineering Research, Management and
Applications 2011. Berlin, Heidelberg: Springer, 173-184.

Mateos C, Zunino A, Misra S, Anabalon D, Flores A. 2017. Managing web service interface
complexity via an OO metric-based early approach. CLEI Electronic Journal 20(3):2
DOI 10.19153/cleiej.20.3.2.

McCabe TJ. 1976. A complexity measure. IEEE Transactions on Software Engineering
SE-2(4):308-320 DOI 10.1109/TSE.1976.233837.

Newman 8. 2015. Building microservices: designing fine-grained systems. First Edition. Sebastopol:
O’Reilly Media, 280.

Ostberg J-P, Wagner S. 2014. On automatically collectable metrics for software maintainability
evaluation. In: 2014 Joint Conference of the International Workshop on Software Measurement
and the International Conference on Software Process and Product Measurement. Piscataway:
IEEE, 32-37.

Palma F, An L, Khomh F, Moha N, Gueheneuc Y-G. 2014. Investigating the change-proneness of
service patterns and antipatterns. In: 2014 IEEE 7th International Conference on Service-Oriented
Computing and Applications. Piscataway: IEEE.

Papazoglou MP. 2003. Service-oriented computing: concepts, characteristics and directions.

In: Proceedings of the 7th International Conference on Properties and Applications of Dielectric
Materials (Cat. No.03CH37417), Piscataway: IEEE Computer Society, 3-12.

Pautasso C, Wilde E. 2009. Why is the web loosely coupled? In: Proceedings of the 18th
International Conference on World Wide Web— WWW’09. New York: ACM Press.

Perepletchikov M. 2009. Software design metrics for predicting maintainability of service-oriented
software. A thesis submitted in fulfilment of the requirements for the degree of doctor of
philosophy, College of Science, Engineering and Health, RMIT University, Melbourne, Australia.

Perepletchikov M, Ryan C, Frampton K, Tari Z. 2007. Coupling metrics for predicting
maintainability in service-oriented designs. In: 2007 Australian Software Engineering Conference
(ASWEC’07). Piscataway: IEEE.

Riaz M, Breaux T, Williams L. 2015. How have we evaluated software pattern application?

A systematic mapping study of research design practices. Information and Software Technology
65:14-38 DOI 10.1016/j.infsof.2015.04.002.

Richardson C. 2018. Microservices patterns. Shelter Island: Manning Publications.

Rotem-Gal-Oz A. 2012. SOA patterns. New York: Manning.

Rowe D, Leaney J, Lowe D. 1998. Defining systems architecture evolvability—a taxonomy of
change. In: International Conference on the Engineering of Computer-based Systems. Los
Alamitos: IEEE, 45-52.

Rud D, Schmietendorf A, Dumke RR. 2006. Product metrics for service-oriented infrastructures.
In: IWSM/Metrikon. Potsdam.

Salman I, Misirli AT, Juristo N. 2015. Are students representatives of professionals in software
engineering experiments? In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. Piscataway: IEEE.

Bogner et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.213 25/25

http://dx.doi.org/10.19153/cleiej.20.3.2
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1016/j.infsof.2015.04.002
http://dx.doi.org/10.7717/peerj-cs.213
https://peerj.com/computer-science/

	On the impact of service-oriented patterns on software evolvability: a controlled experiment and metric-based analysis
	Introduction
	Background
	Experiment Design
	Experiment Results
	Metric Analysis
	Discussion
	Threats to Validity
	Lessons Learned from the Experiment
	Conclusion
	flink10
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

