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A distributed computation consists of a set of processes that cooperate 

to achieve a common goal. A main characteristic of these computations 
is that the processes do not already share a common global memory and 
that they communicate only by exchanging messages over a 
communication network. Moreover, message transfer delays are finite 
yet unpredictable. This computation model defines what is known as the 
asynchronous distributed system model, which includes systems that 
span large geographic areas and are subject to unpredictable loads. 

A key concept of asynchronous distributed systems is causality. More precisely, given two 
events in a distributed computation, a crucial problem is knowing whether they are causally 
related. Could the occurrence of one event be a consequence of the other? 

Processes produce message sendings, message receives, and internal events. Events that 
are not causally dependent are concurrent. Fidge 1 and Mattern 2 simultaneously and 
independently introduced vector clocks to let processes track causality (and concurrency) 
between the events they produce. A vector clock is an array of n integers (one entry per 
process), where the entry j counts the number of relevant events that process Pj produces. 
The timestamp of an event a process produced (or of the local state this event generated) 
is the current value of the corresponding process's vector clock. So, by associating vector 
timestamps with events or local states, we can safely decide whether two events or two 
local states are causally related (see the "A Historical View of Vector Clocks" sidebar). 

Here, we present basic vector clock properties, mechanisms, and application examples to 
help distributed systems engineers solve the casuality problems they face.

IEEE Distributed Systems Online     Published by the IEEE Computer Society     1541-4922/02/$17.00 @ 2002 IEEE 



A model of distributed execution

A distributed program is made up of n sequential local programs that, when executed, can 
communicate and synchronize only by exchanging messages. A distributed computation 
describes a distributed program's execution.

Executing a local program gives rise to a sequential process. Let P1, P2, ..., Pn be this finite 
set of processes. We assume that, at runtime, each ordered pair of communicating 
processes (Pi, Pj) is connected by a reliable channel cij through which Pi can send messages 
to Pj. Executing an internal, send, or receive statement produces an internal, send, or 
receive event. Let 

be the xth event process Pi produces. The sequence 

constitutes the history of Pi. Let H be the set of events that a distributed computation 
produces. 

This set is structured as a partial order by L. Lamport’s “happened-before” relation,[1] 
denoted “—>” and defined as 

e —>f means that event e can affect event f. Consequently, ¬(e —> f) means e cannot 
affect f. The partial order 

constitutes a formal model of the distributed computation with which it is associated. 
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Figure 1 depicts a distributed computation, where black points denote events.

 

 
Figure 1. An example of a distributed computation. 

Two events e and f are concurrent (or causally independent) if 

The causal past of event e is the (partially ordered) set of events f such that f —> e. 
Similarly, the causal future of event e is the (partially ordered) set of events f such that e 
—> f. For example, in Figure 1, we have 

and the causal past of the event e2
2 corresponds to the set 
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Vector clocks: A causality tracking mechanism

A vector clock system is a mechanism that associates timestamps with events (local states) 
such that comparing two events' timestamps indicates whether those events (local states) 
are causally related (and, if they are, which one comes first).

In the time-stamping system, each process Pi has a vector of integers VCi[1..n] (initialized 
to [,0,...,0]) that is maintained as follows:

l     (R1) Each time process Pi produces an event (send, receive, or internal), it 
increments its vector clock entry VCi[i] (VCi[i]: = VCi[i]+1) to indicate that it has 
progressed.

l     (R2) When a process Pi sends a message m, it attaches to it the current value of 
VCi. Let m.VC denote this value.

l     (R3) When Pi receives a message m, it updates its vector clock as 

 

Note that VCi[i] counts the number of events that Pi has so far produced. Moreover, for

 

VCi[j] represents the number of events Pj produced that belong to the current causal past 
of Pi. When a process Pi produces an event e, it can associate with that event a vector 
timestamp whose value equals the current value of VCi. Figure 1 shows vector timestamp 

values associated with events and local states. For example, e2
6.VC = (5,6,5).

Let e.VC and f.VC be the vector timestamps associated with two distinct events e and f, 
respectively. The following property is the fundamental property associated with vector 
clocks:2,3

where e.VC < f.VC is an abbreviation for 
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Let Pi be the process that produced e. This additional information lets us simplify the 

previous relation to 2,3

(See the "An Efficient Implementation of Vector Clocks" sidebar.)

In our discussion of basic vector clock properties, we investigate three problems—causal 
broadcast, detecting message stability, and detecting an event pattern. 

Causal broadcast
Birman and Joseph introduced the causal broadcast notion to reduce the asynchrony of 
communication channels as application processes perceive them.4 It states that the order 
in which proccesses deliver messages to application processes cannot violate the 
precedence order (defined by the —> relation) of the corresponding broadcast events. 
More precisely, if two broadcast messages m and m´ are such that broadcast(m) —> 
broadcast(m´), then any process must deliver m before m´. If the broadcasts of m and 
m´are concurrent, then proccesses are free to deliver m and m´in any order.

This means that when a proccess delivers a message m to a process, all messages whose 
broadcasts causally precede the broadcast of m have already been delivered to that 
process. The ISIS system first proposed such a communication abstraction.4

Several researchers have proposed vector clock-based implementations of causal 
broadcast, based on the following idea:5,6 A receiving process Pi must delay delivering a 
message m until all the messages broadcast in the causal past of m are delivered to Pi. 
Consider Figure 2. When m´ arrives at P2, its delivery must be delayed because m´ arrived 
at P2 before m, and the sending of m causally precedes m´. To this end, each process Pi 
must manage a vector clock (VCi) tracking its current knowledge on the number of 
messages that each process has sent.
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Figure 2. Causal delivery of broadcast messages.

Figure 3 describes a simple broadcast protocol (similar to one presented elsewhere5). 
Broadcast events are a computation's relevant events, and VCi[j] represents Pi’s knowledge 
of the number of messages that Pj did broadcasts and delivered to Pi. Each message m 
piggybacks a vector timestamp m.VC, revealing how many messages each process has 
broadcast in the causal past of m’s broadcast. Then, when a process Pi receives a message 
m, it delays its delivery until all the messages that belong to its causal past are delivered. 
This is expressed by a simple condition involving the vector clock of the receiving process 
Pi and the vector timestamp (m.VC) of the received message m—namely,

 

Figure 3 describes the resulting causal broadcast protocol (vectors are initialized to 
[0,...,0]).
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Figure 3. A simple causal broadcast protocol.

Detecting message stability
Consider applications in which processes broadcast operations to all the 
others proccesses, and where each process must eventually receive the 
same set of operations that correct processes send. This problem 
abstracts the notions of reliable broadcasting7 and eventual consistency,8 
just to name a few. 

In the context of reliable broadcasting, operations correspond to messages, and, to meet 
the problem requirements in the presence of sender process failures and network 
partitions, each process must buffer a copy of every message it sends or receives. If a 
process Pi fails, any process with a copy of a message m sent by Pi can forward m to any 
process Pj that detects it has not received m. This can induce a rapid growth of the buffer 
at each process with the risk of overflowing. Therefore, we need a policy that reduces 
buffer overflow occurrence. A simpler observation shows that buffering a message that has 
been delivered to all its intended destinations is not necessary. Such a message is called a 
stable message, and we can safely discard such messages from a process's local buffer.

A message stability detection protocol manages the process buffers. Such a protocol can be 
lazy (stability information piggybacks on application messages), use gossiping (periodic 
broadcast of control messages propogates stability information), or hybrid (both 
piggybacking and gossiping propogate stability information).

To concentrate on the buffer management actions, we consider the simple case where 
communication channels are first-in first-out, and we assume there is no failure. Moreover, 
causal delivery is not ensured (that is, each message is delivered on receipt).

Broadcast events are the computation's relevant events. Each process Pi has a vector (MCi) 
of vector clocks. This vector of vectors is such that the vector MCi[k] keeps Pi aware of 

7



messages delivered to Pk. More precisely, 

represents Pi’s knowledge of the number of messages that Pk delivered and Pl sent; 
MCi[i][i] represents the sequence number of the next message Pi sent. Hence, the 
minimum value over column j of MCi —that is,

 

—represents Pi’s knowledge of the sequence number of the last message Pj sent that is 
stable.

To propagate stability information, each message m that Pi sends piggybacks the identity 
of its sender (m.sender) and a vector timestamp m.VC, indicating how many messages Pi 
has delivered from each other process Pl, (that is, m.VC corresponds to the vector 
MCi[i][*]).

Two operations update the local buffer (bufferi): deposit(m) inserts a message m in the 
buffer and discard(m) removes m from the buffer. A process buffers a message 
immediately after it receives it and discards it as soon as it becomes stable (that is, when 
the process learns that all processes have delivered m). We can express the stability 
predicate for a message m using

where m.VC[m.sender] represents the sequence number of m. Figure 4 describes the 
resulting protocol.
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Figure 4. A simple lazy stability tracking protocol.

Figure 5 describes an example of running this stability tracking protocol. P3 discards m 
immediately after receiving m´, because 

which corresponds to the sequence number of m. At the end of the example, P1’s and P3’s 
buffers contain m´and m´´, while Pj’s buffer contains only m´´. To extend this protocol to 
handle causal delivery, we just need to add a delivery condition, similar to the one in 
Figure 3 and in the second clause of the protocol in Figure 4.
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Figure 5. An example of lazy stability tracking.

Detecting an event pattern
Our causal broadcast example showed a simple use of vector clocks: each process 
managed a simple vector clock, and each message carried a vector timestamp. In our 
example of message stability detection, each message carried a vector timestamp, but 
each process had to manage a vector of vector clocks. Detecting an event pattern is a 
problem that comes from distributed debugging and shows that some problems require not 
only that each process manage a vector of vector clocks but also that each message carries 
a vector of vector clocks. In other words, solving causality-related problems is not always 
tractable with simple vector clocks.9.10

Consider a distributed execution that produces two types of internal events: some are 
tagged black and others are tagged white. All communication events are tagged white. (As 
an example, in a distributed debugging context, an internal event is tagged black if the 
associated local state satisfies a given local predicate; otherwise, it is tagged white.) 

Given two black events, s and t, the problem consists of deciding if there is another black 
event u, such that 
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Let black(e) be a predicate indicating whether event e is black. More formally, given two 

events s and t, the problem consists of deciding if the following predicate P(s,t) is true:

Figure 6 shows that vector clocks do not solve this problem. In these two executions, both 
events s have the same timestamp: s.VC = (0,0,2). Similarly, both events t have also the 
same timestamp—namely, t.VC = (3,4,2). However, the right execution satisfies the 
pattern, while the left one does not. (Note that s and t will have the same timestamp in 
both executions, even if vector clocks are incremented only on the occurrence of black 
events.)

Figure 6. Recognizing a pattern.

 

Which clocks solve it?
For the predicate P(s,t) to be true, a black event must exist in the causal past of t, which 
has s in its causal past. This problem concerns detecting causality, so it requires vector 

clocks. Moreover, two levels of predecessors appear in the predicate P. Tracking two levels 
of predecessors requires a vector of vector clocks.

The predicate P(s,t) can be decomposed into two subpredicates P1(s,u,t) and P2(s,u,t):

with

11



P1 indicates that only the black events are relevant for the predicate detection. So, 

detecting P(s,t) requires only tracking black events. This means we can use vector clocks 

managed in the following way: A process Pi increments VCi[i] only when it produces a 
black event, and the other statements associated with vector clocks are left unchanged. 
(Actually, black events define the abstraction level at which the distributed computation 

must be observed to detect P. All the other events—namely, the white events—are not 

relevant for detecting P).

Consider Figure 7, where only black events are indicated. We have P(s,t1) = false, while 

P(s,t2)=true. The underlying idea to solve the problem lies in associating two timestamps 
with each black event e:

l     A vector timestamp e.VC (as indicated, we only count black events in this vector 
timestamp)

l     An array of vector timestamps e.MC[1..n], whose meaning is e.MC[j], contains the 
vector timestamp of the last black event of Pj that causally precedes e

Note that we can consider e.MC[j] as a pointer from e to the last event that precedes it on 
Pj. When considering Figure 7, we have

t1.MC[1] = a.VC t1.MC[2] = b.VC
t1.MC[3] = s.VC

t2.MC[1] = t1.VC t2.MC[2] = u.VC t2.MC[3] = s.VC

Figure 7. P(s,t2) is true; P(s,t1) is not.
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Managing the clocks
Each process Pi has a vector clock VCi[1..n] and a vector of vector clocks MCi[1..n]. Figure 
8 describes how we manage those variables.

Figure 8. Detection protocol for P(s,t).

As before, the notation VC: = max(VC1,VC2) (statement S3 in Figure 8) is an abbreviation 
for 

Moreover, in statement S3, MCi[k] and m.MC[k] contain vector timestamps of two black 
events of Pk. It follows that one of them is greater than (or equal to) the other. The result 
of max(MCi[k],m.MC[k]) is this greatest timestamp. Let us finally note that MCi[i][i] = 
VCi[i] – 1 and 

So, we can deduce the vector clock VCi from the diagonal of the matrix MCi. This can 
reduce the number and size of data structures that processes manage and messages carry.
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The pattern detection predicate
As we have seen, P(s,t) is equivalent to 

Note that, because the protocol considers only black events, the predicate P1 is trivially 

satisfied by any triple of events. So, detecting P(s,t) amounts to only detecting 

Given s and t with their timestamps (namely, s.VC and s.MC for s; t.VC and t.MC for t), we 
can state the predicate 

in a more operational way using vector timestamps:

If such an event u does exist, some process Pk produced it, and it belongs to the causal 
past of t. Consequently, its vector timestamp is such that

 

From this observation, the previous relation translates into

As 

is the vector timestamp of a black event in the causal past of t, we have 
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Consequently, the pattern detection predicate simplifies and becomes

To summarize, when this condition is true, it means that a process Pk exists that has 
produced a black event u such that

l     The vector timestamp of u (u.VC) is less than or equal to t.MC[k].
l     The event u belongs to the causal past of t (because t.MC[k] is less than t.VC).
l     The event u belongs to the causal future of s (because s.VC is less than u.VC is less 

than or equal to t.MC[k]).

So, when the system is equipped with the vector clock system we described, we can 
evaluate the predicate P(s,t) using a simple test—namely, 

Moreover, when we know the identity of the process (say Pi) that produced s, we can 
simplify this test. Using the relation R (presented earlier), the test becomes

Bounded vector clocks 

A vector clock system's main drawback is its inability to face scalability problems. To fully 
capture the causality relation among the events that a distributed computation's processes 
produce, a vector clock system requires vectors of size n (n being the number of 
processes). To circumvent this problem, researchers have introduced two types of bounded 
vector clocks (whose size is bounded by a constant that is less than n): approximate 11 
and k-dependency12vector clocks.

Approximate vector clocks use a space-folding approach. We can use this approach when 
we are only interested in never missing causality between related events (so, we accept 
that we perceive two events as ordered when they are actually concurrent). k-dependency 
vectors involve a time-folding approach in which an event's bounded timestamp provides 
causal dependencies that, when recursively exploited, reconstruct the event's vector 
timestamp.
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Approximate vector clocks
In some applications, we are only interested in approximating the 
causality relation such that

(let e.TS be the timestamp associated with e). Such a timestamping never violates 
causality in the sense that, from e.TS < f.TS, we can safely conclude ¬(f —> e). If we 
optimistically conclude e —>f, then we can be wrong, because it is possible that e and f are 
not causally related. That is why concluding e —>f from e.TS < f.TS constitutes an 
approximation of the causality relation.

F.J. Torres and M. Ahamad introduced approximate vector clocks. They provide a simple 
mechanism that associates approximate vector timestamps with events. Consider vector 
clocks whose size is bounded by a constant (with k < n). So, TSi[1..k] is Pi's approximate 
vector clock. Moreover, let fk be a deterministic function from {1,...,n} to {1,...,k}. Given a 
process identity i, this function associates with it the entry fk(i) of all vector clocks 
TS[1..k]—that is, TS[fk(i)].

Implementing such a time-stamping system is similar to the one described earlier. Each 
process Pi manages its vector clock TSi[1..k], initialized to (0,..,0) in the following way:

l     (R1) Each time Pi produces a send, receive, or internal event, it updates its vector 
clock TSi to indicate it has progressed: TSi[fk(i)]:= TSi[fk(i)]+1. 

l     (R2) When a process Pi sends a message m, it attaches to it the current value of 
TSi; let m.TS be this value.

l     (R3) When Pi receives a message m, it updates its vector clock as

Combined with the function fk, these rules ensure that all processes Pi share the xth entry 
of any vector clock, such that fk(i) = x. Such an entry sharing makes the vector clocks 
approximate as far as causality tracking is concerned. These approximate vector clocks are 
characterized by[11]
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More generally, if k = n and 

then we get classic vector clocks that track full causality. In that case, the vector clock 
system's entry i is private to Pi in the sense that only Pi can entail its increase.

If k = 1, then 

and all processes share the unique entry of the (degenerated) vector. The resulting clock 
system is Lamport’s scalar clock system.[1] This scalar clock system is well known for its 
property 

Many applications consider the timestamp of an event e that Pi produced as the pair 
(e.TS,i). This provides an easy way to totally order (without violating causal relations) the 
set of all the events a distributed computation produces. This is the famous total order 
relation Lamport defined[1]—namely, if Pi and Pj produce e and f, respectively, e is ordered 
before f if

Also, scalar clocks detect some concurrent events—more precisely, 

If 1 < k < n, then all processes Pi such that fk(i) = x share the same entry x of the vector 
clock system. This sharing adds false causality detections that make this vector clock 
system approximate. Experimental results[11] show that with n = 100 and 2 < k < 5, the 
percentage of situations in which e —> f is concluded from e.TS < f.TS (while e and f are 
concurrent) is less than 10 percent.

Dependency vectors
Given two events e and f of a distributed computation such that e.TS < f.TS, approximate 
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vector clocks can't conclude whether e —> f or e || f. For such a pair, they can only answer 
¬(f —> e). So, an important question is,“Does a vector clock system exist with a bounded 
number of entries, from which we can reconstruct the causality relation—that is, conclude 
(maybe after some computation) that e —> f, f —>e, or e || f?" Dependency vectors 
answer this question.

The following behavior characterizes a k-dependency vector clock system. Each process Pi 
has a vector clock DVi[1..n], which is initialized to (0,...,0) and managed in the following 

way: 12

l     (R1) Each time Pi produces an event, it updates its dependency vector DVi to 
indicate it has progressed: DVi[i]:= DVi[i]+1.

l     (R2) When a process Pi sends a message m, it attaches to it a set of pairs 
(x,DVi[x]). This set always includes the pair (i,DVi[i]). Let m.TS denote the set 
piggybacked by m.

l     (R3) When Pi receives a message m, it updates its dependency vector as

A k-dependency vector clock system provides each process with an n size vector, but each 
message carries only a subset of size k. This subset always includes the current value of 
DVi[i] (where Pi is the sender process). Choosing the other k – 1 values is left to the user. 

A good heuristics consists in choosing the last modified k – 1 entries of DVi.12 It is easy to 
see that k = n provides classical vector clocks.

Let us consider two events e and f, timestamped e.DV and f.DV, respectively. Moreover, 
let's assume that Pi produced e. The k-dependency vector protocol ensures the following 
property:

Note that the implication is in one direction only. This means that it is possible that e—>f 
while e.DV[i] > f.DV[i]. But, unlike approximate vector clocks, k-dependency vectors can 
(using additional computation) reconstruct the causality relation (see the "Reconstructing 

Vector Timestamps from Dependency Timestamps" sidebar). Of course, according to the 
problem to be solved, we can use k-dependency vectors and approximate vectors 
simultaneously.

The concept of causality among events is fundamental to designing and analyzing 
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distributed programs. However, a vector clock system suffers from limitations other than 
scalability. For example, the system can't cope with hidden channels.13 This problem arises 
when a system's processes can communicate through one or more channels that are 
distinct from the ones application messages use. Hidden channels can causally relate 
events in distinct processes; the vector clock system doesn't reveal these relations. Shared 
memory, a database, and a shared file are examples of hidden channels. 

Moreover, vector clocks can be difficult to adapt to dynamic systems, such as systems of 
multithreaded processes. A vector clock system also suffers limitations when we consider 
the computation model at a higher abstraction level where computation atoms are intervals 
(sets of events) instead of events. The "Can Vector Clocks Always Track 
Precedence Relations?" sidebar briefly addresses this issue.
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A Historical View of Vector Clocks

Researchers have used vector clocks empirically as an ad hoc device to solve specific 
problems before capturing and defining them as a concept. For example, D.S. Parker and 
colleagues used similar vectors to detect mutual inconsistencies of the copies of replicated 
data.1 B. Ladin and R. Liskov used them to detect obsolete data,2 and M. Raynal used 
them to prevent drift among a set of n logical scalar clocks.3 D.B. Johnson and W. 
Zwaenepoel 4 and R.E. Strom and S. Yemini 5 used them to track causal dependencies 
between events in their checkpointing protocols. F. Schmuck used them to implement 
efficient causal broadcast in asynchronous distributed systems.6

C.J. Fidge 7 and F. Mattern 8 simultaneously and independently introduced vector clocks as 
a concept, with their basic properties, in 1988. These works have clearly defined the 
concept, studied and proved fundamental properties associated with vector clocks, and 
promoted them as a first-class mechanism to study and solve causality-related problems in 
distributed systems.
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An Efficient Implementation of Vector Clocks

A drawback of a vector clock system is that each message must carry an array of n 
integers (where n is the size of the application—the total number of processes).1

To face this problem, M. Singhal and A. Kshemkalyani proposed a simple technique that, 
for the average case, reduces the size of the vector timestamps that messages piggyback.2 
This technique is based on the empirical observation that few processes are likely to 
frequently interact (this is especially true when the number of processes is high). Between 
two successive sending events from process Pi to process Pj, only a few of the vector 
clock's entries are expected to change. 

In such a case, there is no point in attaching to each outgoing message from Pi to Pj a 
whole vector clock. It suffices to piggyback only the information relative to the entries that 
changed. This corresponds to a set of tuples (proc_id, VC[proc_id]). Therefore, we expect 
this technique will save communication bandwidth at the cost of local memory overhead, 
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because a process must keep track of the last values sent to each process (one vector for 
each process) to select the set of tuples to piggyback on each message. 

Figure A shows the progress of vector clocks using Singhal-Kshemkalyani’s technique. Note 
that for this technique to work, communication channels must be first-in first-out.

 

 
Figure A. The progress of vector clocks using Signhal-
Kshemkalyani's technique.

Another practical problem that vector clock systems must face is the overflow of their 
vector entries. A general solution to solve this problem appears elsewhere.[3,4]
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Reconstructing Vector Timestamps from Dependency Timestamps

To reconstruct the vector timestamp associated with an event, we add a checker process to 
the computation. Each time a process executes a relevant event e, it sends the checker 
process the corresponding dependency vector e.DV. The checker has n queues, one for 
each process, where it stores the timestamps received from the corresponding process. If 
the checker requires a timestamp that has not yet been deposited in the corresponding 
queue, it waits until it has received the required information. The algorithm the checker 
process executes to compute the vector timestamp associated with an event e operates 
iteratively (defined in Figure B). The function max(V1,V2) is defined as

Figure B. The algorithm the checker process executes to compute the vector 
timestamp associated with an event e.

The repeat statement computes the causal precedence relation's transitive closure. The 
inner loop moves the current dependency timestamp of e forward by incorporating the new 
dependencies revealed by events belonging to old_V and not taken into account by e.V. 
When e.V = old_V, there are no more dependencies to be incorporated in e.V, so e.V is the 
vector timestamp of e—namely, e.VC.
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Several researchers have investigated such a reconstruction of a vector timestamp from 
dependency vectors.1-3 Others consider dependency vectors with k = 1.4,5 They use them 
to define consistent global checkpoints and causal breakpoints, respectively. 
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Can Vector Clocks Always Track Precedence Relations?

Assume sequences of events, namely intervals, as the base abstraction for the 
computation's model. In this case, each event belongs to an interval and each process is 
made of a sequence of nonempty intervals. Messages establish relations between intervals 
in distinct processes.1 For example, Figure C shows an interval-based model of a 
computation where the interval A precedes B (due to message m´), B precedes C (due to 
message m) and then by transitivity A precedes C.
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Figure C. An interval-based model of a computation.

A vector clock system cannot capture such dependencies, because a part of them can be 
noncausal. For example, the dependency established between A and C is noncausal, 
because message m was sent from P2 before the receipt of m´ thus a vector systems can't 
track this dependence. The dependency among intervals is usually called zigzag 
dependency 2, due to the presence of such noncausal relations. When each interval is 
made of exactly one event, vector clocks are sufficient to track all precedence relations 
because they cannot be noncausal.

This interval-based model is used, for example, in the context of rollback recovery. It 
defines consistent global checkpoints3, where an interval is the set of events between two 
successive checkpoints, a local checkpoint is a dump of a local state of the process onto 
stable storage, and a global checkpoint is a set of local checkpoints, one from each 
process.
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