
February 2002

Fundamentals of Distributed Computing:
A Practical Tour of Vector Clock Systems
Roberto Baldoni • Universita di Roma, Italy
Michel Raynal • IRISA, France

A distributed computation consists of a set of processes that cooperate

to achieve a common goal. A main characteristic of these computations
is that the processes do not already share a common global memory and
that they communicate only by exchanging messages over a
communication network. Moreover, message transfer delays are finite
yet unpredictable. This computation model defines what is known as the
asynchronous distributed system model, which includes systems that
span large geographic areas and are subject to unpredictable loads.

A key concept of asynchronous distributed systems is causality. More precisely, given two
events in a distributed computation, a crucial problem is knowing whether they are causally
related. Could the occurrence of one event be a consequence of the other?

Processes produce message sendings, message receives, and internal events. Events that
are not causally dependent are concurrent. Fidge 1 and Mattern 2 simultaneously and
independently introduced vector clocks to let processes track causality (and concurrency)
between the events they produce. A vector clock is an array of n integers (one entry per
process), where the entry j counts the number of relevant events that process Pj produces.
The timestamp of an event a process produced (or of the local state this event generated)
is the current value of the corresponding process's vector clock. So, by associating vector
timestamps with events or local states, we can safely decide whether two events or two
local states are causally related (see the "A Historical View of Vector Clocks" sidebar).

Here, we present basic vector clock properties, mechanisms, and application examples to
help distributed systems engineers solve the casuality problems they face.

IEEE Distributed Systems Online Published by the IEEE Computer Society 1541-4922/02/$17.00 @ 2002 IEEE

A model of distributed execution

A distributed program is made up of n sequential local programs that, when executed, can
communicate and synchronize only by exchanging messages. A distributed computation
describes a distributed program's execution.

Executing a local program gives rise to a sequential process. Let P1, P2, ..., Pn be this finite
set of processes. We assume that, at runtime, each ordered pair of communicating
processes (Pi, Pj) is connected by a reliable channel cij through which Pi can send messages
to Pj. Executing an internal, send, or receive statement produces an internal, send, or
receive event. Let

be the xth event process Pi produces. The sequence

constitutes the history of Pi. Let H be the set of events that a distributed computation
produces.

This set is structured as a partial order by L. Lamport’s “happened-before” relation,[1]
denoted “—>” and defined as

e —>f means that event e can affect event f. Consequently, ¬(e —> f) means e cannot
affect f. The partial order

constitutes a formal model of the distributed computation with which it is associated.

2

Figure 1 depicts a distributed computation, where black points denote events.

Figure 1. An example of a distributed computation.

Two events e and f are concurrent (or causally independent) if

The causal past of event e is the (partially ordered) set of events f such that f —> e.
Similarly, the causal future of event e is the (partially ordered) set of events f such that e
—> f. For example, in Figure 1, we have

and the causal past of the event e2
2 corresponds to the set

3

Vector clocks: A causality tracking mechanism

A vector clock system is a mechanism that associates timestamps with events (local states)
such that comparing two events' timestamps indicates whether those events (local states)
are causally related (and, if they are, which one comes first).

In the time-stamping system, each process Pi has a vector of integers VCi[1..n] (initialized
to [,0,...,0]) that is maintained as follows:

l (R1) Each time process Pi produces an event (send, receive, or internal), it
increments its vector clock entry VCi[i] (VCi[i]: = VCi[i]+1) to indicate that it has
progressed.

l (R2) When a process Pi sends a message m, it attaches to it the current value of
VCi. Let m.VC denote this value.

l (R3) When Pi receives a message m, it updates its vector clock as

Note that VCi[i] counts the number of events that Pi has so far produced. Moreover, for

VCi[j] represents the number of events Pj produced that belong to the current causal past
of Pi. When a process Pi produces an event e, it can associate with that event a vector
timestamp whose value equals the current value of VCi. Figure 1 shows vector timestamp

values associated with events and local states. For example, e2
6.VC = (5,6,5).

Let e.VC and f.VC be the vector timestamps associated with two distinct events e and f,
respectively. The following property is the fundamental property associated with vector
clocks:2,3

where e.VC < f.VC is an abbreviation for

4

Let Pi be the process that produced e. This additional information lets us simplify the

previous relation to 2,3

(See the "An Efficient Implementation of Vector Clocks" sidebar.)

In our discussion of basic vector clock properties, we investigate three problems—causal
broadcast, detecting message stability, and detecting an event pattern.

Causal broadcast
Birman and Joseph introduced the causal broadcast notion to reduce the asynchrony of
communication channels as application processes perceive them.4 It states that the order
in which proccesses deliver messages to application processes cannot violate the
precedence order (defined by the —> relation) of the corresponding broadcast events.
More precisely, if two broadcast messages m and m´ are such that broadcast(m) —>
broadcast(m´), then any process must deliver m before m´. If the broadcasts of m and
m´are concurrent, then proccesses are free to deliver m and m´in any order.

This means that when a proccess delivers a message m to a process, all messages whose
broadcasts causally precede the broadcast of m have already been delivered to that
process. The ISIS system first proposed such a communication abstraction.4

Several researchers have proposed vector clock-based implementations of causal
broadcast, based on the following idea:5,6 A receiving process Pi must delay delivering a
message m until all the messages broadcast in the causal past of m are delivered to Pi.
Consider Figure 2. When m´ arrives at P2, its delivery must be delayed because m´ arrived
at P2 before m, and the sending of m causally precedes m´. To this end, each process Pi
must manage a vector clock (VCi) tracking its current knowledge on the number of
messages that each process has sent.

5

Figure 2. Causal delivery of broadcast messages.

Figure 3 describes a simple broadcast protocol (similar to one presented elsewhere5).
Broadcast events are a computation's relevant events, and VCi[j] represents Pi’s knowledge
of the number of messages that Pj did broadcasts and delivered to Pi. Each message m
piggybacks a vector timestamp m.VC, revealing how many messages each process has
broadcast in the causal past of m’s broadcast. Then, when a process Pi receives a message
m, it delays its delivery until all the messages that belong to its causal past are delivered.
This is expressed by a simple condition involving the vector clock of the receiving process
Pi and the vector timestamp (m.VC) of the received message m—namely,

Figure 3 describes the resulting causal broadcast protocol (vectors are initialized to
[0,...,0]).

6

Figure 3. A simple causal broadcast protocol.

Detecting message stability
Consider applications in which processes broadcast operations to all the
others proccesses, and where each process must eventually receive the
same set of operations that correct processes send. This problem
abstracts the notions of reliable broadcasting7 and eventual consistency,8
just to name a few.

In the context of reliable broadcasting, operations correspond to messages, and, to meet
the problem requirements in the presence of sender process failures and network
partitions, each process must buffer a copy of every message it sends or receives. If a
process Pi fails, any process with a copy of a message m sent by Pi can forward m to any
process Pj that detects it has not received m. This can induce a rapid growth of the buffer
at each process with the risk of overflowing. Therefore, we need a policy that reduces
buffer overflow occurrence. A simpler observation shows that buffering a message that has
been delivered to all its intended destinations is not necessary. Such a message is called a
stable message, and we can safely discard such messages from a process's local buffer.

A message stability detection protocol manages the process buffers. Such a protocol can be
lazy (stability information piggybacks on application messages), use gossiping (periodic
broadcast of control messages propogates stability information), or hybrid (both
piggybacking and gossiping propogate stability information).

To concentrate on the buffer management actions, we consider the simple case where
communication channels are first-in first-out, and we assume there is no failure. Moreover,
causal delivery is not ensured (that is, each message is delivered on receipt).

Broadcast events are the computation's relevant events. Each process Pi has a vector (MCi)
of vector clocks. This vector of vectors is such that the vector MCi[k] keeps Pi aware of

7

messages delivered to Pk. More precisely,

represents Pi’s knowledge of the number of messages that Pk delivered and Pl sent;
MCi[i][i] represents the sequence number of the next message Pi sent. Hence, the
minimum value over column j of MCi —that is,

—represents Pi’s knowledge of the sequence number of the last message Pj sent that is
stable.

To propagate stability information, each message m that Pi sends piggybacks the identity
of its sender (m.sender) and a vector timestamp m.VC, indicating how many messages Pi
has delivered from each other process Pl, (that is, m.VC corresponds to the vector
MCi[i][*]).

Two operations update the local buffer (bufferi): deposit(m) inserts a message m in the
buffer and discard(m) removes m from the buffer. A process buffers a message
immediately after it receives it and discards it as soon as it becomes stable (that is, when
the process learns that all processes have delivered m). We can express the stability
predicate for a message m using

where m.VC[m.sender] represents the sequence number of m. Figure 4 describes the
resulting protocol.

8

Figure 4. A simple lazy stability tracking protocol.

Figure 5 describes an example of running this stability tracking protocol. P3 discards m
immediately after receiving m´, because

which corresponds to the sequence number of m. At the end of the example, P1’s and P3’s
buffers contain m´and m´´, while Pj’s buffer contains only m´´. To extend this protocol to
handle causal delivery, we just need to add a delivery condition, similar to the one in
Figure 3 and in the second clause of the protocol in Figure 4.

9

Figure 5. An example of lazy stability tracking.

Detecting an event pattern
Our causal broadcast example showed a simple use of vector clocks: each process
managed a simple vector clock, and each message carried a vector timestamp. In our
example of message stability detection, each message carried a vector timestamp, but
each process had to manage a vector of vector clocks. Detecting an event pattern is a
problem that comes from distributed debugging and shows that some problems require not
only that each process manage a vector of vector clocks but also that each message carries
a vector of vector clocks. In other words, solving causality-related problems is not always
tractable with simple vector clocks.9.10

Consider a distributed execution that produces two types of internal events: some are
tagged black and others are tagged white. All communication events are tagged white. (As
an example, in a distributed debugging context, an internal event is tagged black if the
associated local state satisfies a given local predicate; otherwise, it is tagged white.)

Given two black events, s and t, the problem consists of deciding if there is another black
event u, such that

10

Let black(e) be a predicate indicating whether event e is black. More formally, given two

events s and t, the problem consists of deciding if the following predicate P(s,t) is true:

Figure 6 shows that vector clocks do not solve this problem. In these two executions, both
events s have the same timestamp: s.VC = (0,0,2). Similarly, both events t have also the
same timestamp—namely, t.VC = (3,4,2). However, the right execution satisfies the
pattern, while the left one does not. (Note that s and t will have the same timestamp in
both executions, even if vector clocks are incremented only on the occurrence of black
events.)

Figure 6. Recognizing a pattern.

Which clocks solve it?
For the predicate P(s,t) to be true, a black event must exist in the causal past of t, which
has s in its causal past. This problem concerns detecting causality, so it requires vector

clocks. Moreover, two levels of predecessors appear in the predicate P. Tracking two levels
of predecessors requires a vector of vector clocks.

The predicate P(s,t) can be decomposed into two subpredicates P1(s,u,t) and P2(s,u,t):

with

11

P1 indicates that only the black events are relevant for the predicate detection. So,

detecting P(s,t) requires only tracking black events. This means we can use vector clocks

managed in the following way: A process Pi increments VCi[i] only when it produces a
black event, and the other statements associated with vector clocks are left unchanged.
(Actually, black events define the abstraction level at which the distributed computation

must be observed to detect P. All the other events—namely, the white events—are not

relevant for detecting P).

Consider Figure 7, where only black events are indicated. We have P(s,t1) = false, while

P(s,t2)=true. The underlying idea to solve the problem lies in associating two timestamps
with each black event e:

l A vector timestamp e.VC (as indicated, we only count black events in this vector
timestamp)

l An array of vector timestamps e.MC[1..n], whose meaning is e.MC[j], contains the
vector timestamp of the last black event of Pj that causally precedes e

Note that we can consider e.MC[j] as a pointer from e to the last event that precedes it on
Pj. When considering Figure 7, we have

t1.MC[1] = a.VC t1.MC[2] = b.VC
t1.MC[3] = s.VC

t2.MC[1] = t1.VC t2.MC[2] = u.VC t2.MC[3] = s.VC

Figure 7. P(s,t2) is true; P(s,t1) is not.

12

Managing the clocks
Each process Pi has a vector clock VCi[1..n] and a vector of vector clocks MCi[1..n]. Figure
8 describes how we manage those variables.

Figure 8. Detection protocol for P(s,t).

As before, the notation VC: = max(VC1,VC2) (statement S3 in Figure 8) is an abbreviation
for

Moreover, in statement S3, MCi[k] and m.MC[k] contain vector timestamps of two black
events of Pk. It follows that one of them is greater than (or equal to) the other. The result
of max(MCi[k],m.MC[k]) is this greatest timestamp. Let us finally note that MCi[i][i] =
VCi[i] – 1 and

So, we can deduce the vector clock VCi from the diagonal of the matrix MCi. This can
reduce the number and size of data structures that processes manage and messages carry.

13

The pattern detection predicate
As we have seen, P(s,t) is equivalent to

Note that, because the protocol considers only black events, the predicate P1 is trivially

satisfied by any triple of events. So, detecting P(s,t) amounts to only detecting

Given s and t with their timestamps (namely, s.VC and s.MC for s; t.VC and t.MC for t), we
can state the predicate

in a more operational way using vector timestamps:

If such an event u does exist, some process Pk produced it, and it belongs to the causal
past of t. Consequently, its vector timestamp is such that

From this observation, the previous relation translates into

As

is the vector timestamp of a black event in the causal past of t, we have

14

Consequently, the pattern detection predicate simplifies and becomes

To summarize, when this condition is true, it means that a process Pk exists that has
produced a black event u such that

l The vector timestamp of u (u.VC) is less than or equal to t.MC[k].
l The event u belongs to the causal past of t (because t.MC[k] is less than t.VC).
l The event u belongs to the causal future of s (because s.VC is less than u.VC is less

than or equal to t.MC[k]).

So, when the system is equipped with the vector clock system we described, we can
evaluate the predicate P(s,t) using a simple test—namely,

Moreover, when we know the identity of the process (say Pi) that produced s, we can
simplify this test. Using the relation R (presented earlier), the test becomes

Bounded vector clocks

A vector clock system's main drawback is its inability to face scalability problems. To fully
capture the causality relation among the events that a distributed computation's processes
produce, a vector clock system requires vectors of size n (n being the number of
processes). To circumvent this problem, researchers have introduced two types of bounded
vector clocks (whose size is bounded by a constant that is less than n): approximate 11
and k-dependency12vector clocks.

Approximate vector clocks use a space-folding approach. We can use this approach when
we are only interested in never missing causality between related events (so, we accept
that we perceive two events as ordered when they are actually concurrent). k-dependency
vectors involve a time-folding approach in which an event's bounded timestamp provides
causal dependencies that, when recursively exploited, reconstruct the event's vector
timestamp.

15

Approximate vector clocks
In some applications, we are only interested in approximating the
causality relation such that

(let e.TS be the timestamp associated with e). Such a timestamping never violates
causality in the sense that, from e.TS < f.TS, we can safely conclude ¬(f —> e). If we
optimistically conclude e —>f, then we can be wrong, because it is possible that e and f are
not causally related. That is why concluding e —>f from e.TS < f.TS constitutes an
approximation of the causality relation.

F.J. Torres and M. Ahamad introduced approximate vector clocks. They provide a simple
mechanism that associates approximate vector timestamps with events. Consider vector
clocks whose size is bounded by a constant (with k < n). So, TSi[1..k] is Pi's approximate
vector clock. Moreover, let fk be a deterministic function from {1,...,n} to {1,...,k}. Given a
process identity i, this function associates with it the entry fk(i) of all vector clocks
TS[1..k]—that is, TS[fk(i)].

Implementing such a time-stamping system is similar to the one described earlier. Each
process Pi manages its vector clock TSi[1..k], initialized to (0,..,0) in the following way:

l (R1) Each time Pi produces a send, receive, or internal event, it updates its vector
clock TSi to indicate it has progressed: TSi[fk(i)]:= TSi[fk(i)]+1.

l (R2) When a process Pi sends a message m, it attaches to it the current value of
TSi; let m.TS be this value.

l (R3) When Pi receives a message m, it updates its vector clock as

Combined with the function fk, these rules ensure that all processes Pi share the xth entry
of any vector clock, such that fk(i) = x. Such an entry sharing makes the vector clocks
approximate as far as causality tracking is concerned. These approximate vector clocks are
characterized by[11]

16

More generally, if k = n and

then we get classic vector clocks that track full causality. In that case, the vector clock
system's entry i is private to Pi in the sense that only Pi can entail its increase.

If k = 1, then

and all processes share the unique entry of the (degenerated) vector. The resulting clock
system is Lamport’s scalar clock system.[1] This scalar clock system is well known for its
property

Many applications consider the timestamp of an event e that Pi produced as the pair
(e.TS,i). This provides an easy way to totally order (without violating causal relations) the
set of all the events a distributed computation produces. This is the famous total order
relation Lamport defined[1]—namely, if Pi and Pj produce e and f, respectively, e is ordered
before f if

Also, scalar clocks detect some concurrent events—more precisely,

If 1 < k < n, then all processes Pi such that fk(i) = x share the same entry x of the vector
clock system. This sharing adds false causality detections that make this vector clock
system approximate. Experimental results[11] show that with n = 100 and 2 < k < 5, the
percentage of situations in which e —> f is concluded from e.TS < f.TS (while e and f are
concurrent) is less than 10 percent.

Dependency vectors
Given two events e and f of a distributed computation such that e.TS < f.TS, approximate

17

vector clocks can't conclude whether e —> f or e || f. For such a pair, they can only answer
¬(f —> e). So, an important question is,“Does a vector clock system exist with a bounded
number of entries, from which we can reconstruct the causality relation—that is, conclude
(maybe after some computation) that e —> f, f —>e, or e || f?" Dependency vectors
answer this question.

The following behavior characterizes a k-dependency vector clock system. Each process Pi
has a vector clock DVi[1..n], which is initialized to (0,...,0) and managed in the following

way: 12

l (R1) Each time Pi produces an event, it updates its dependency vector DVi to
indicate it has progressed: DVi[i]:= DVi[i]+1.

l (R2) When a process Pi sends a message m, it attaches to it a set of pairs
(x,DVi[x]). This set always includes the pair (i,DVi[i]). Let m.TS denote the set
piggybacked by m.

l (R3) When Pi receives a message m, it updates its dependency vector as

A k-dependency vector clock system provides each process with an n size vector, but each
message carries only a subset of size k. This subset always includes the current value of
DVi[i] (where Pi is the sender process). Choosing the other k – 1 values is left to the user.

A good heuristics consists in choosing the last modified k – 1 entries of DVi.12 It is easy to
see that k = n provides classical vector clocks.

Let us consider two events e and f, timestamped e.DV and f.DV, respectively. Moreover,
let's assume that Pi produced e. The k-dependency vector protocol ensures the following
property:

Note that the implication is in one direction only. This means that it is possible that e—>f
while e.DV[i] > f.DV[i]. But, unlike approximate vector clocks, k-dependency vectors can
(using additional computation) reconstruct the causality relation (see the "Reconstructing

Vector Timestamps from Dependency Timestamps" sidebar). Of course, according to the
problem to be solved, we can use k-dependency vectors and approximate vectors
simultaneously.

The concept of causality among events is fundamental to designing and analyzing

18

distributed programs. However, a vector clock system suffers from limitations other than
scalability. For example, the system can't cope with hidden channels.13 This problem arises
when a system's processes can communicate through one or more channels that are
distinct from the ones application messages use. Hidden channels can causally relate
events in distinct processes; the vector clock system doesn't reveal these relations. Shared
memory, a database, and a shared file are examples of hidden channels.

Moreover, vector clocks can be difficult to adapt to dynamic systems, such as systems of
multithreaded processes. A vector clock system also suffers limitations when we consider
the computation model at a higher abstraction level where computation atoms are intervals
(sets of events) instead of events. The "Can Vector Clocks Always Track
Precedence Relations?" sidebar briefly addresses this issue.

References

1. L. Lamport, "Time, Clocks and the Ordering of Events in a Distributed System,"
Comm. ACM, vol. 21, no. 7, July 1978, pp. 558-565.

2. C. Fidge, "Logical Time in Distributed Computing Systems," Computer, vol. 24, no.
8, Aug. 1991, pp. 28-33.

3. F. Mattern, "Virtual Time and Global States of Distributed Systems," Proc. Parallel
and Distributed Algorithms Conf., Elsevier Science, 1988, pp. 215–226.

4. K. Birman and T. Joseph, "Reliable Communication in the Presence of Failures,"ACM
Trans. Computer Systems, vol. 5, no. 1, Feb. 1987, pp. 47–76.

5. K. Birman, A. Schiper, and P. Stephenson, "Lightweight Causal Order and Atomic
Group Multicast," ACM Trans. Computer Systems, vol. 9, no. 3, Aug. 1991, pp.
282–314.

6. M. Raynal, A. Schiper, and S. Toueg, "The Causal Ordering Abstraction and a Simple
Way to Implement it," Information Processing Letter, vol. 39, no. 6, Sept. 1991, pp.
343–350.

7. K. Guo et al., Hierarchical Message Stability Tracking Protocols, tech. report 1647,
Dept. Computer Science, Cornell Univ., 1997.

8. D.B. Terry et al., "Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System," Proc. 15th ACM Symp. Operating System Principles,
ACM Press, New York, 1995, pp. 173–183.

9. C.J. Fidge, "Limitation of Vector Timestamps for Reconstructing Distributed
Computations," Information Processing Letters, vol. 68, no. 2, Oct. 1998, pp. 87-91.

10. M. Raynal, "Illustrating the Use of Vector Clocks in Property Detection: an Example
and a Counter-Example," Proc. 5th Int. EUROPAR Conf., Springer-Verlag, New York,
1999, pp. 806-814.

11. F.J. Torres-Rojas and M. Ahamad, "Plausible Clocks: Constant Size Logical Clocks for
Distributed Systems," Proc. 10th Int'l Workshop Distributed Algorithms, Springer-
Verlag, New York, 1996, pp. 71–88.

12. R. Baldoni and G. Melideo, Tradeoffs in Message Overhead versus Detection Tim in
Causality Tracking, tech. report 06-01, Dipartimento di Informatica e Sistemistica,

19

Univ. of Rome, 2000.
13. P. Verissimo, Real-Time Communication in Distributed Systems (second edition),

ACM Press, New York, 1993.

Roberto Baldoni is an associate professor at the school of engineering of the University of
Rome, La Sapienza. He has published more than seventy scientific papers in the fields of
distributed computing, dependable middleware, and communication protocols. He received
a degree in electronic engineering and a PhD in computer science from the University of
Rome, La Sapienza. Contact him at baldoni@dis.uniroma1.it;
www.dis.uniroma1.it/~baldoni.

Michel Raynal is a professor of computer science at the University of Rennes, France. At
IRISA (CNRS-INRIA-University joint computing laboratory located in Rennes), he leads the
ADP
(Distributed Algorithms and Protocols) research group. His main research interest lies in
the fundamental concepts, principles, and mechanisms that underly the design and
construction of distributed systems. He is currently studying the causality concept and
agreement problems.
He is also involved in the implementation of reliable communication primitives, the
consistency of distributed data, the design and use of checkpointing protocols, and the set
of problems
that can be solved on top of a consensus building block. Contact him at
Michel.Raynal@irisa.fr.

A Historical View of Vector Clocks

Researchers have used vector clocks empirically as an ad hoc device to solve specific
problems before capturing and defining them as a concept. For example, D.S. Parker and
colleagues used similar vectors to detect mutual inconsistencies of the copies of replicated
data.1 B. Ladin and R. Liskov used them to detect obsolete data,2 and M. Raynal used
them to prevent drift among a set of n logical scalar clocks.3 D.B. Johnson and W.
Zwaenepoel 4 and R.E. Strom and S. Yemini 5 used them to track causal dependencies
between events in their checkpointing protocols. F. Schmuck used them to implement
efficient causal broadcast in asynchronous distributed systems.6

C.J. Fidge 7 and F. Mattern 8 simultaneously and independently introduced vector clocks as
a concept, with their basic properties, in 1988. These works have clearly defined the
concept, studied and proved fundamental properties associated with vector clocks, and
promoted them as a first-class mechanism to study and solve causality-related problems in
distributed systems.

20

References

1. D.S. Parker et al., "Detection of Mutual Inconsistency in Distributed Systems," IEEE
Trans. Software Eng., vol. SE9, no. 3, 1983, pp. 240–246.

2. B. Liskov and R. Ladin, "Highly Available Distributed Services and Fault-Tolerant
Distributed Garbage Collection," Proc. 5th ACM Symp. Principles of Distributed
Computing, ACM Press, New York, 1986, pp. 29–39.

3. M. Raynal, "A Distributed Algorithm to Prevent Mutual Drift Between n Logical
Clocks," Information Processing Letters, vol. 24, no. 3, Feb. 1987, pp. 199–202.

4. D.B. Johnson and W. Zwaenepoel, "Recovery in Distributed Systems Using
Optimistic Message Logging and Checkpointing," Proc. 7th ACM Symp. Principles of
Distributed Computing, ACM Press, New York, 1988, pp. 171–181.

5. R.E. Strom and S. Yemini, "Optimistic Recovery in Distributed Systems," ACM Trans.
Computer Systems, vol. 3, no. 3, Aug. 1985, pp. 204–226.

6. F. Schmuck, The Use of Efficient Broadcast in Asynchronous Distributed Systems,
doctoral dissertation, Dept. Computer Science, Cornell University, 1988, p. 124.

7. C.J. Fidge, "Timestamp in Message Passing Systems that Preserves Partial
Ordering," Proc. 11th Australian Computing Conf., 1988, pp. 56–66.

8. F. Mattern, "Virtual Time and Global States of Distributed Systems," Proc. Parallel
and Distributed Algorithms Conf., Elsevier Science, 1988, pp. 215–226.

An Efficient Implementation of Vector Clocks

A drawback of a vector clock system is that each message must carry an array of n
integers (where n is the size of the application—the total number of processes).1

To face this problem, M. Singhal and A. Kshemkalyani proposed a simple technique that,
for the average case, reduces the size of the vector timestamps that messages piggyback.2
This technique is based on the empirical observation that few processes are likely to
frequently interact (this is especially true when the number of processes is high). Between
two successive sending events from process Pi to process Pj, only a few of the vector
clock's entries are expected to change.

In such a case, there is no point in attaching to each outgoing message from Pi to Pj a
whole vector clock. It suffices to piggyback only the information relative to the entries that
changed. This corresponds to a set of tuples (proc_id, VC[proc_id]). Therefore, we expect
this technique will save communication bandwidth at the cost of local memory overhead,

21

because a process must keep track of the last values sent to each process (one vector for
each process) to select the set of tuples to piggyback on each message.

Figure A shows the progress of vector clocks using Singhal-Kshemkalyani’s technique. Note
that for this technique to work, communication channels must be first-in first-out.

Figure A. The progress of vector clocks using Signhal-
Kshemkalyani's technique.

Another practical problem that vector clock systems must face is the overflow of their
vector entries. A general solution to solve this problem appears elsewhere.[3,4]

References

1. B. Charron-Bost, "Concerning the Size of Logical Clocks in Distributed Systems,"
Information Processing Letters, vol. 39, no. 12, July 1992, pp. 11-16.

2. M. Singhal and A. Kshemkalyani, "An Efficient Implementation of Vector Clocks,"
Information Processing Letters, vol. 43, no. 10, Aug. 1992, pp. 47-52.

22

3. L.-Y. Yen and T.-L. Huang, "Resetting Vector Clocks in Distributed Systems," J.
Parallel and Distributed Systems, vol. 43, no. 1, May 1997, pp. 15-20.

4. R. Baldoni, "A Positive Acknowledgment Protocol for Causal Broadcasting," IEEE
Trans. Computers, vol. 47, no. 12, Dec. 1998, pp. 1341-1350.

Reconstructing Vector Timestamps from Dependency Timestamps

To reconstruct the vector timestamp associated with an event, we add a checker process to
the computation. Each time a process executes a relevant event e, it sends the checker
process the corresponding dependency vector e.DV. The checker has n queues, one for
each process, where it stores the timestamps received from the corresponding process. If
the checker requires a timestamp that has not yet been deposited in the corresponding
queue, it waits until it has received the required information. The algorithm the checker
process executes to compute the vector timestamp associated with an event e operates
iteratively (defined in Figure B). The function max(V1,V2) is defined as

Figure B. The algorithm the checker process executes to compute the vector
timestamp associated with an event e.

The repeat statement computes the causal precedence relation's transitive closure. The
inner loop moves the current dependency timestamp of e forward by incorporating the new
dependencies revealed by events belonging to old_V and not taken into account by e.V.
When e.V = old_V, there are no more dependencies to be incorporated in e.V, so e.V is the
vector timestamp of e—namely, e.VC.

23

Several researchers have investigated such a reconstruction of a vector timestamp from
dependency vectors.1-3 Others consider dependency vectors with k = 1.4,5 They use them
to define consistent global checkpoints and causal breakpoints, respectively.

References

1. P. Baldy et al., "Efficient Reconstruction of the Causal Relationship in Distributed
Systems," Proc. 1st Canada-France Conf. Parallel and Distributed Computing,
Springer Verlag, New York, 1994, pp. 101-113.

2. V.K. Garg, Principles of Distributed Systems, Kluwer Academic Press, Dordrecht,
Netherlands, 1996.

3. R. Schwarz and F. Mattern, "Detecting Causal Relationship in Distributed
Computations: In Search of the Holy Grail," Distributed Computing, vol. 7, no. 3,
1994, pp. 149-174.

4. R. Baldoni et al., "Direct Dependency-Based Determination of Consistent Global
Checkpoints," Int'l J. Computer Systems Science and Eng.,vol. 16, no. 1, Jan. 1999.

5. J. Fowler and W. Zwaenepoel, "Causal Distributed Breakpoints," Proc. 10th Int'l IEEE
Conf. Distributed Computing Systems, IEEE Press, Piscataway, N.J., 1990, pp. 134-
141.

Can Vector Clocks Always Track Precedence Relations?

Assume sequences of events, namely intervals, as the base abstraction for the
computation's model. In this case, each event belongs to an interval and each process is
made of a sequence of nonempty intervals. Messages establish relations between intervals
in distinct processes.1 For example, Figure C shows an interval-based model of a
computation where the interval A precedes B (due to message m´), B precedes C (due to
message m) and then by transitivity A precedes C.

24

Figure C. An interval-based model of a computation.

A vector clock system cannot capture such dependencies, because a part of them can be
noncausal. For example, the dependency established between A and C is noncausal,
because message m was sent from P2 before the receipt of m´ thus a vector systems can't
track this dependence. The dependency among intervals is usually called zigzag
dependency 2, due to the presence of such noncausal relations. When each interval is
made of exactly one event, vector clocks are sufficient to track all precedence relations
because they cannot be noncausal.

This interval-based model is used, for example, in the context of rollback recovery. It
defines consistent global checkpoints3, where an interval is the set of events between two
successive checkpoints, a local checkpoint is a dump of a local state of the process onto
stable storage, and a global checkpoint is a set of local checkpoints, one from each
process.

References

1. R. Baldoni, J.-M. Helary, and M. Raynal, "Consistent Records in Asynchronous
Computations," Acta Informatica, vol. 35, no. 6, June 1998, pp. 441–455.

2. R.H.B. Netzer and J. Xu, "Necessary and Sufficient Conditions for Consistent Global
Snapshots," IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 2, Feb. 1995,
pp. 165–169.

3. K.M. Chandy and L. Lamport, "Distributed Snapshots: Determining Global States of
Distributed Systems," ACM Trans. Computer Systems, vol. 3, no. 1, Feb. 1985, pp.
63–75. 1985.

25

