
Exercise 1
Group members: Eyad Hamed, Daniel Langbein, Artem
Semenovykh, Sam Tadjiky

1 GQM quality model

Product:
Image database software

Goal:
Image database that works correctly and efficiently.

Question:
Can 10,000 images (average size: 10 MB) be added, deleted, updated and searched for
correctly and efficiently?

Measures:
1. Number of correct operations on the database
2. Duration of operations on the database
3. Number of corrupted images

Measurement methods:
1. Count the number of failed operations
2. Measure the average response time (ms) for each operation
3. Check if any retrieved images are corrupted

Interpretation:
1. A correct database system would have 0 failed operations.
2. Add and update operations ~500ms; Delete operations ~10ms; Search operations

~15ms; etc
3. A correct database system would have 0 corrupted images.



2 Checkstyle in boulder dash

Errors:
[Declaration Order]: Reorder declarations: static above non-static, highest visibility on top.
[Visibility Modifier]: Use more restrictive visibility modifiers. If needed, create getters and
setters for private variables.
[AbbreviationAsWordInName]: If it is a constant, make it static. In general this refers to
having too many upper case letters in a variable name.
[HiddenField]: Rename local variables so that they don’t hide fields with the same name.
[SimplifyBooleanExpression]: The result of an expression should not be compared to
false or true. Instead, use ! to negotiate an expression or remove == true.
[ReturnCount]: Rewrite the function to use at most one return statement. E.g. merge
multiple if-conditions together or use a helper method for that.
[NeedBraces]: Add braces to if and else clauses.

Warnings:
[StringLiteralEquality]: The warning is displayed because the code is comparing Strings
using “==” instead of using the equals method of the String class. The “==” operator only
compares object references and this could cause unexpected behavior.

[EqualsAvoidNull]: The warning is displayed because you should put String literals on the
left side of the .equals method, so that the equals function is called on an object which is
guaranteed not to be null.

3 Integrated quality assurance in the agile process

How can quality assurance measures be seamlessly integrated into
the agile development process?
Quality Assurance (QA) can be integrated into the Agile development process:

1. Involve QA from the start: QA should be involved from the beginning of the project.
Incorporate of QA in early stages ensures that the QA team understands the product
and can plan their testing strategies effectively.

2. Cross-functional Teams: Encourage cross-functional teams where developers and
QA work closely together. This promotes better communication, faster feedback, and
quicker resolution of issues.

3. Test Early and Often: In Agile, testing is not a phase that comes after development,
but it's a continuous activity. Implement a Test-Driven Development approach where
tests are written before the code. This helps in identifying issues early and makes it
easier to fix them.

4. Regular Reviews and Retrospectives: Conduct regular code reviews to maintain
code quality. Also, have sprint retrospectives to reflect on what went well and what
can be improved in terms of QA.



Which specific practices and tools are useful in each phase of the
agile development cycle?

Backlog creation
A good practice is to use a Customer Journey Map (CJM) - it refers to the path that a
customer takes before making a “purchase” decision. Visualizing this path can help the team
understand what features need to be in the project. Having QA at this stage allows him to
draw up his work plan in advance. CJMs also helps to make sure that the requirements on
which it is based are correct. (Principle of early fault detection and correction)

Tools: JIRA / Trello / etc for task management + Miro for CJM visualization

Planning
Planning Poker is a method that helps a team to exchange ideas about the scope or time
required for the implementation of user stories in a sprint and thus to come to better
estimates. Also, it is good to have Story Points to capture the required resources in a single
paradigm. Furthermore for every story there are criteria for its completion. (Principle of
product and process-dependent quality assurance)

Tools: Task Managers + Planning Poker + communication tools

Development
Pair Programming is a practice, when two developers sit at a work computer and work
together on a task. One developer writes the code, while the other questions the correctness
of the code and the solution. The second person can also be a QA, as they often have
sufficient knowledge to review the code. (Principle of integrated quality assurance during
development)

Tools: IDE + Git for version control

Testing
At this stage, QA is most active, checking the results of the team's work. (Principle of
independent quality assurance). It is also good practice to automate testing to reduce the
time it takes to check minor changes, as well as to use various testing techniques to ensure
comprehensive coverage.

Tools: Unit testing tools (JUnit, Mocha) + Integration testing tools (Postman) + Functional
testing (Selenium, Appium) + etc

Review and Retrospective
Discussing what went well, what didn't, and how to improve. This refers to the actual
progress, as well as the process. (Principle of product and process dependent quality
assurance)

Tools: The actual software + FunRetro / Retrium



4 Guidelines in OOP
1. HiddenField: This check ensures that class fields are not hidden by local variables

or parameters with the same name. It helps maintain a clear distinction between the
class’s state and the local scope.

2. VisibilityModifier: This check ensures that the visibility of class members (fields,
methods) is explicitly defined. Although having different scopes is not limited to OOP,
it is very important to for instance hide the object complexity.

3. MissingOverride: This refers to a missing @Override statement on top of an
inherited method. Inheritance is one of the core concepts of OOP. Using that
annotation makes the code more readable as it gets clearer where the method of the
inherited class is used and where it is modified.


