
Deep Learning - Zusammenfassung
Autoren: Linda Schneider und Julian Kotzur

Introduction

→ The importance of deep learning increased within the last
years

→ Reasons are the huge possibilities arising out of higher
computational power

→ Deep Learning is successfully used in Translating Software,
Image Classification and Speech Assistance

Limitations of deep learning
• Image Captioning: Straight forward and fatal errors
• Deep learning often rely on manual made data sets
• End-to-end learning prohibits verification on parts
• Much time required to learn a deep learning network

Postulates for Pattern Recognition
1. Availability of a representative sample w of patterns f i(x)

for the given field of problems Ω
2. A pattern has features, which characterize its membership

to a certain class Ωκ
3. Features of the same class should be compact in same do-

main: Domains of different classes should be separable
4. A complex pattern consists of simpler constituents, which

have a certain relation to each other. A pattern can be
decomposed into these constituents

5. A complex pattern has a certain structure. Important:not
any arrangement of simple constituents is a valid pattern

6. Two patterns are similar if their features of simpler con-
stituents differ only slightly

Rosenblatts Perceptron
• Computes the function y = sign(wTx)
• The set w are the weights with included bias at w0

• The input vector x has also the bias with input 1 included
• The output has a binary classification y ∈ {−1, 1}
• Training: Process samples to perform weight update regu-

larly and optimize them till convergence
• Task of the objective function: Find weights that minimize

the distance of misclassified samples to the decision bound-
ary

argmin{D(w) = −
∑
xi∈M

yi · (wTxi)}

→ M : Set of misclasified feature vectors
⇒ Iterative optimization

• Note: In each iteration, the cardinality and composition of
M may change

Feedforward Networks

→ Multi-Layer Perceptrons enables non-linear decision
boundaries

⇒ Example where it is needed: XOR Problem
→ Terms: Input, Hidden, Output Layer
→ A single layer can already be shown as an universal function

approximator

Universial Approximation Theorem
• Given is an arbitrary continuous function f on a compact

subset of Rm
• For any ε > 0, you can find a feedfoward neural network

with a non-linear activation function that can be trained to
converge to f

|F (x)− f(x)| < ε

• Is already fulfilled with a single hidden layer!
• BUT: It may be more efficient to use more hidden layer than

just one to approximate a given function
• General problems: how many nodes, how to train ...

Example: Classification Tree into neural network

Softmax Function
• Used for multiclass problems
• For exclusive classes, y looks as follows:

yk =

{
1 if k is index of true class

0 otherwise

• One-hot encoding : Only one element is 1!

• Softmax function rescales a vector: yk = exp(xk)∑
exp(xj)

• Exponential function ensures positive values
• Allows to treat output as normalized probabilities
• Two properties: Output sums up to 1 and is always ≥ 0
• Loss function: How good is my prediction?

• Softmax loss: L(y, x) = −log
(exp(xk)∑

exp(xj)

)
|yk=1

→ Combination with cross entropy loss
⇒ Naturally handles multiple class problems

Optimization of the network
• Goal: Find optimal weights for all layers
• Abstract whole network as loss function L(w, x, y) and con-

sider all training samples
• Gradient descent: minw{L(w, x, y)}
• Update of the weights:

wk+1 = wk − η∇w
1

M

M∑
m=1

L(w, x, y)

• Choice of η is important:
→ Too high: Positive feedback which produced low grows

without bounds
→ Too small: Negative feedback which produced a vanishing

gradient

1

Vanishing and exploiding gradient
→ Problems get more worse for deeper networks
→ Reason for this are the multiplications
Example for vanishing gradient:
→ Sigmoid/tanh activation functions map large regions of x to

a small range in y
⇒ Hence large changes in x only produce small changes in y
Calculating the derivative

• Finite Difference:
→ Easy to use
→ Computationally inefficient
→ Frequently used to check implementations

• Analytic gradient:
→ Chain rule and linearity enable to decompose functions
→ Computation more efficient
→ Analytic formulas have to be calculated manually

Backpropagation
• Forward pass: Compute activations
• Backward pass: Recursively apply chain rule
• Computationally very efficient using a dynamic program-

ming approach
• Not a training algorithm, just a help for computing a gradi-

ent
Fully connected Layers

• Forward pass: ŷ = Wx
• Remember to add the bias as last entry of x and hence a

further line for the weights
• Gradient with respect to weights: ∂L/∂W = ∇ŷLxT
• Gradient with respect to input: ∂L/∂x = WT∇ŷL
• Example of an often used loss function (quadratic loss):

L(x,W, y) = 0.5‖Wx− y‖22

⇒ Then simply: ∇ŷL = ŷ − y

Loss functions

Distinguish between two different classes:

→ Classification: Estimate discrete variable for each input
→ Regression: Estimate continuous variable for each input
Last activation function vs. loss function

The last activation function:
• is applied on each sample

of the batch
• is used for training and

testing
• produces output
• is generally a vector

The loss function
• combines all samples and

labels
• is only used during train-

ing, not for testing
• produces the loss
• is generally a scalar

Identification of suitable loss functions
→ We do not only want good results on the training set, but

also for generalization
⇒ Hence, we want to develop a good estimator for our dataset
→ Instead of guessing a suitable estimator, we can use the

Maximum Likelihood Estimation

Maximum Likelihood Estimator:
Given: Training set with observations X and labels Y
Assumptions:

• Probability for ym given observation xm is p(ym | xm)
• Input-Output-pairs are independent and identically dis-

tributed
⇒ Probability to observe Y is

∏
p(ym | xm)

Likelihood function L(w):

max
w
{L(w)} = max

w
{
∏

p(ym | xm, w)} ⇔ min
w
{−ln(L(w))}

→ Using the negative log Likelihood is better because of the
sum instead of the product!

How to find a suitable loss function
→ You should know the distribution of your dataset (nearly)
→ Then insert probability function inside negative log

Likelihood and simplify it
⇒ For optimizing, you only need the parts depending on w!

Example: Regression with univariate Gaussian model
Probability function:

p(y | x, y, β) = N (ŷ(x,w),
1

β
) =

√
β

2π
eβ
−(ym−ŷ(xm,w))2

2

Calculation with log Likelihood:

L(w) =

M∑
m=1

−ln(

√
β

2π
eβ
−(ym−ŷ(xm,w))2

2)

=

M∑
m=1

−ln(

√
β

2π
) +

β

2
(ym − ŷ(xm, w))2

=
M

2
(ln(2π)− ln(β)) +

β

2

M∑
m=1

(ym − ŷ(xm, w))2︸ ︷︷ ︸
depends on w

Filter relevant parts and derive L2-loss:

1

2

M∑
m=1

‖ym − ŷ(xm, w)‖22

→ L2/L1-loss can be applied for classification, but is generally
used for regression

⇒ Minimizing the expected misclassification probability
→ BUT: Slow convergence, because there are no penalties for

heavily wrong probabilities
⇒ Adventures choice for sets with extreme label noise
→ Classification of one class can be done with the Bernoulli

distribution

B(y | p) =

{
py(1− p)1−y if y ∈ {0, 1}
0 otherwise

→ One-hot encoded classification for multiple classes with the
Multinoulli distribution

C(y | p) =

{∏K
k=0 p

yk
k if yk ∈ {0, 1}

0 otherwise

→ Inserted in the negative log Likelihood, we achieve:

−
M∑
m=1

K∑
k=0

yk,mln(ŷk,m)︸ ︷︷ ︸
Crossentropy

= −
M∑
m=1

ln(ŷk(xm, w)) |yk,m=1

→ Cross-entropy can also be used for regression
→ We have to assure that the labels are between [0,1]
⇒ Easily done with the sigmoid activation function
→ But: y is not longer one-hot encoded!

2

Subgradients
Motivation:
→ If we use the sign-function, we would just count the number

of misclassifications
⇒ Hinge loss is a convex approximation of the misclassification

loss

⇒ But what about the gradient?
Usage of subgradients
→ Subgradients are a generalization of gradients for convex,

non-smooth functions
⇒ For piecewise continuous functions you just choose a particular

subgradient

Why (not) use Support Vector Machines
• SVM compute the optimal separating hyperplane
• If it is not linearly separable, we have to take misclassifica-

tion
• Punished with help of Lagrangian function, but only linearly
• It’s a composition of L2-regularizer and hinge loss
• With the correct loss function, one can use SVM and other

restricted optimization formulations
• Same as hinge loss up to a multiplicative component

Optimization

→ Optimizing empirical risk with gradient descent

Ex,y∼p̂data(x,y)[L(w, x, y)] =
1

M

∑
L(w, xm, ym)

General gradient descent:

w(k+1) = w(k) − η∇L(w(k), x, y)

→ Step size defined by learning rate η
→ Calculate gradient with respect to every sample

Different versions of gradient descent
• Batch Gradient Descent: All M samples are used before

updating the weights
→ Preferred option for convex problems
→ Guaranteed decrease of the error
⇒ Problems: Non-convexity and memory limitations

• Stochastic Gradient Descent (SGD): Use only one sample
for updating the weights
→ Highly parallelizable
→ Not necessarily generate a decrease in every iteration

• Mini-Batch SGD: Use B �M random samples
→ ∇L(w(k)) = 1

B∇
∑
L(w(k), xb)

→ Small batches offer regularization effect
⇒ Need a smaller η
→ Efficient method

Learning rate choice for SGD:

⇒ Practice: Adapt η gradually
Momentum for faster convergence

• Momentum: Parameter update based on current and past
gradients, scaled with momentum µ

v(k) = µv(k−1) − η∇L(w(k))

w(k+1) = w(k) + v(k)

+ Dampened oscillations by overcomming poor Hessian and
variance in SGD

+ Faster convergence
- Adjusting of the learning rate still needed

• Nesterov Momentum: Compute the gradient in the direction
we are going anyway

v(k) = µv(k−1) − η∇L(w(k))

w(k+1) = w(k) − µv(k−1) + (1 + µ)v(k)

+ Good in situations of high variance

• Adaptive Gradient: Adaption based on all past squared gra-
dients element-wise

g(k) = ∇L(w(k))

r(k) = r(k−1) + g(k) � g(k)

w(k+1) = w(k) − η√
r(k) + ε

� g(k)

+ One can set individual learning rates for every parameter
- Learning rates decrease too aggressively

• RMSProp: Improvement of AdaGrad by introducing an ad-
ditional parameter ρ

g(k) = ∇L(w(k))

r(k) = ρr(k−1) + (1− ρ)g(k) � g(k)

w(k+1) = w(k) − η√
r(k) + ε

� g(k)

3

+ Aggressive decrease is fixed (ρ = 0.9)
- Still a learning rate to set

• Adadelta: Getting rid of the learning rate, but needs addi-
tional two formulas to RMSProp

• Adaptive Moment Estimation (Adam): Combination of all
discussed methods, adds a bias correction

g(k) = ∇L(w(k))

v(k) = µv(k−1) − (1− µ)g(k)

r(k) = ρr(k−1) + (1− ρ)g(k) � g(k)

v̂(k) =
v(k)

1− µk
r̂(k) =

r(k)

1− ρk

w(k+1) = w(k) − η v̂(k)√
r̂(k) + ε

+ Robust optimization
+ Individual learning rate
- Loss curves are harder to interpret
- Empirically fail to converge to good solutions
→ For ensure non-increasing step size:

v̂(k) = max(v̂(k−1), v(k))

Activation functions

→ Non-linear function enable the results of the universal
approximation theorem

→ Compared to the biological example, we can model all or
nothing response with the sign function, but a time
component is missing

Definition (Zero-centered).
A function is called zero-centered when it is symmetric in the
origin.

→ An activation function, that is not zero-centered causes
the weights to have all the same sign, which may
introduce undesirable zig-zagging in the gradient updates

→ An activation of 0 produces an output bigger that 0
(co-variate shift of successive layers)

⇒ Layers constantly have to adapt the shifting distribution

Example: Assume we have two parameters w1 and w2 and we
know xi > 0. Compute the weight update:

f =
∑

wixi + b

∂f

∂wi
= xi > 0

∂L

∂wi
=
∂L

∂f

∂f

∂wi
=
∂L

∂f
xi

So the gradient has always the same sign as ∂L
∂f ,

because it is the same for all weight updates.

→ To solve this problem we can normalize the data in advance
to be zero-centered (batch normalization)

⇒ Batch learning reduces the variance of the updates!
Different activation functions

• Sign:

f(x) =

{
+1 x ≥ 0

−1 x < 0

+ Normalized output
+ Same like biological all or nothing response
- Gradient vanishes almost everywhere
- Mathematically undesirable

• Sigmoid Logistic function:

f(x) =
1

1 + exp(−x)

+ Normalized/probabilistic output
+ Close to biological model, but differentiable
- Still the vanishing gradient problem for high/small values

of x (saturates)
- Not zero-centered

• Tanh function:

f(x) = tanh(x)

+ Zero-centered
- Only a shifted version of sigmoid, hence still saturates

• Rectified Linear Unit (ReLU):

f(x) = max(0, x)

+ Good generalization due to piece-wise linearity
+ Speed up during learning
+ No vanishing gradient problem for positive values of x
- Not zero-centered
→ Enabled training of deep supervised NN without

unsupervised pre-training
→ Dying ReLUs: If weights/bias trained negative values,

that the ReLU performs only to 0 and than no
more updates are possible.

⇒ Often related to a too high learning rate
• Leaky or parametric ReLU:

f(x) =

{
x if x > 0

αx else

→ Leaky ReLU: α = 0.01
→ Parametric ReLU: learn α
+ Fixing the dying ReLU problem

• Exponential Linear Units:

f(x) =

{
x if x > 0

α(exp(x)− 1) else

+ No vanishing gradient
+ Reduces shift in activations
→ Scaled version with additional lambda before, idea is

self-normalization
→ Theoretical properties great, but try ReLU first!

• Scaled ELU:

f(x) = λ

{
x x > 0

α(exp(x)− 1) else

→ Idea: Self-normalizing
⇒ Alternative variant of ReLU

4

Finding optimal activation function
• Is a reinforcement learning problem
⇒ Unfortunately that means training a network from

scratch in every step
• Strategy:

1. Define a search space
2. Perform the searching using a recurrent neural network

with reinforcement learning
3. Use the best result

• Complicated activation functions did not perform well, even
if they are the best functions

• The search often result in difficult, expensive optimization
problems

Characterization of good activation functions
• They have almost linear areas to prevent vanishing gradients
• They have saturating areas to provide non-linearity
• They should be monotonic

Convolutional Neural Networks

Motivation
• We can represent any kind of relationship between inputs

with fully connected layers
• But images/videos/sounds have a very high number of input

data
→ Example: Image with 512 × 512 pixels and 8 hidden

neurons

(5122 + 1) · 8 > 2 million trainable weights

• From a machine learning point of view, pixels are bad fea-
tures, because they are
→ highly correlated
→ scale dependent
→ have intensity variations

• We can try to find the same macro features at different lo-
cations and build a hierarchy
⇒ Composition matters!

Architecture of a convolutional neural network

→ Local connectivity can be extracted with filters, which are the
same for the whole image

⇒ Secures translational equivariance
→ Filters/kernels have to be learned!
Four essential building blocks

• Convolutional layer for feature extraction
• Activation function for introducing non-linearity
• Pooling layer for compressing and aggregating information
• Last Layer for classification (fully connected or flatten and

1 × 1 convolution)

Convolutional Layers
→ Exploit structure by only connecting pixels in a neighborhood
⇒ Can be expressed as a fully connected layer, where nearly each

entry in W is 0
→ Effective filter size: 3× 3, 5× 5, 7× 7
→ Features that are important at one location are

likely important anywhere in the image
⇒ Hence use shared weights and trainable features
→ Remember: Cross-correlation is convolution with a flipped

kernel – and vice versa
→ Implementation: Cross-correlation is mostly used in the

forward pass, because the weights are initialized randomly
anyway

Padding
• Generally: Convolution without striding can reduce the im-

age size by 2 · bn2 c
• ’Same’/Zero padding: Fill boarder with zeros, such that in-

put and output have the same size
• ’Valid’/No padding: Output is smaller than the input

Forward Pass: Multi-channel convolution
• Input of size X×Y ×S, where X×Y is the pixel dimension

of the picture and S is the number of channels (eg. colors)

• H filters with size M ×N × S
⇒ Fully connected across the channels!

• Output dimension with zero padding: X × Y ×H

Backward Pass: Multi-channel convolution
• We can use the same formulas as in a fully connected layer,

but this needs a lot of rearranging to create correct weights
and error matrices!

• Hence for implementation, we also do a convolution with
flipped filters

• Instead of flipping the filters, we use cross-correlation in the
forward and convolution in the backward pass

• For 3D operations, the channel dimension has to be flipped
once more!

Strided Convolutions
• Instead of multiplying the filter at each pixel position, we

can skip some positions
• Stride s describes the offset, the output size is reduced by a

factor of s
• Mathematically: Convolution + subsampling
• Allows trainable downsampling strategy

5

Dilated Convolutions

• Dilate convolution kernel: Skip certain pixels
• Goal: Wider receptive field with less parameters/weights

1 × 1 Convolution Concept

• Till now, filters are fully connected in depth direction S
• If we decrease the neighborhood to 1 × 1, we gain the fully

connected property everywhere
• The dimensionality change from S channels to H features

remains

⇒ If we flatten the input, 1 × 1 convolutions are a fully con-
nected layer

• 1 × 1 convolutions simply calculate inner products at each
position

• 1 × 1 convolutions are a simple an efficient method to de-
crease depth size of a network
⇒ Can accelerate the computation

• Additionally dimension reduction is learned
⇒ Useful for reducing redundancy in feature maps

Pooling Layers
Idea behind Pooling Layers

• Fuses information of the input across spatial locations
⇒ Decreases the number of parameters!
⇒ Reduces computational costs and overfitting

• Assumptions:
– Features are hierarchically structured
– Regions can summarized
– It’s translational invariant
– Exact location of a feature is not important

Max Pooling

• Forward: Propagate maximum value in a neighborhood to
next layer

• Stride of pooling usually equals the neighborhood size (eg.
2 × 2)

• Don’t forget: Maximum propagation adds additional non-
linearity

• Backward: Hence only one value contributes the error, only
this weight has to be affected

• Error is propagated only along the path of the maximum
value

• A subgradient is given by the colloquial rule ’Winner takes
it all’

• In cases where the stride is smaller than the kernel size the
error might be routed multiple times to the same location
and therefore has to be summed up

Average Pooling
• Forward: Propagate average of the neighborhood
• Backward:Error is shared to equal parts
• Does not consistently perform better than max pooling

Inception model
→ Idea: Let the model learn which type of filter layer suits best
⇒ Construction of ‘inception modules’ that are stacked to form

a large network

Regularization

The aim of regularization is the minimization of the generaliza-
tion error, not of the training error. So we call every change
of the learning algorithms regularization, which fulfills this goal.
Motivation: Finding a good boundary

⇒ Model should also be good in generalization, not just in
training

⇒ Regularization helps to reduce overfitting!
Bias Variance Decomposition

• Is a decomposition for a regression problem
• A similar decomposition exists for classification using the

zero-one loss
• Assume we have

h = f(x) + εtrue model + noise

y = fi(x)different predictors

f̄(x) =
1

m

∑
fi(x)average predictor

6

• Under the assumption that all upcoming cross-correlations
are zero, the average prediction error can be decomposed in:

1

m

∑ 1

T
[ht − fi(xt)]2 aver. prediction error

=
1

T

∑
[ht − f(xt)]

2 noise

+
1

T

∑
[f(xt)− f̄(xt)]

2 bias

+
1

m

∑ 1

T

∑
[f̄(xt)− fi(xt)]2 variance

• We would like to minimize bias and variance
→ Simultaneously optimizing bias and variance is impossible

in general
⇒ Bias and variance can be studied together as model capacity

Model capacity
• Capacity of a model equals the variety of functions it can

approximate

→ Can be increased by increasing the number of parame-
ters and epochs

• One can measure capacity with Vapnik-Chervonenkis (VC)
dimension

→ It is based on counting how many points can be separated
by a model

→ Because of the high dimension of neural networks compared
to classical methods, VC dimension is ineffective in judging
the real capacity of neural networks

• Note: We can always reduce the bias by increasing model
capacity, but the has the price of increasing variance

Influence of data size
• Observation: The variance of the model can be optimized

by using more training data

→ Model capacity has to match the size of the training
set

• If no more data can be acquired, we should think about
trading a higher bias for a lower variance

Classical Techniques
Usage of a validation set
→ We are not allowed to use the test set for training
→ To recognize overfitting, we split of a validation set from the

training data!

→ Here we can use early stopping to use parameters with
minimum validation loss

→ Example stopping criterion: Growing loss for the last x
iterations

Data Augmentation for enlarging the dataset
→ Every transformation should be invariant to the label
Common transformations:

• Random spatial transformations: affine, elastic, rotations ...
• Pixel transformations: changing resolution, random noise,

changing pixel distribution ...
Regularization in the loss function

• General idea: restrict model capacity by using a parameter-
penalty-term in the objective function (→ loss function)

→ This is weighted with a hyperparameter λ. Bigger val-
ues of λ lead to a stronger regularization

• L2-Regularization: Add a penalty term for the weights in
L2-Norm (weight decay)

L̃(w,X, Y) = L(w,X, Y) + λ‖w‖22

→ Moves the weights closer to the origin, hence enforces
a small norm

⇒ We have also to change the weight-parameter update:

w(k+1) = (1− ηλ)w(k)︸ ︷︷ ︸
Shrinkage

− η ∂L

∂w(k)

→ Weights are constantly reduced by a certain factor
⇒ Directions in which the parameters contribute strongly

to the reduction of the objective function remain rela-
tively intact

→ We trade increased bias for reduced variance
• L1-Regularization: Add a penalty term for the weights in
L1-Norm

L̃(w,X, Y) = L(w,X, Y) + λ‖w‖1

→ Forces parts of the weights to be zero, hence enforces
sparsity

→ Can be used for feature selection
⇒ We have also to change the weight-parameter update:

w(k+1) = (w(k) − ηλ)sign(w(k))︸ ︷︷ ︸
Shrinkage

− η ∂L

∂w(k)

Normalization
Data Normalization

• Only use training data to calculate normalization
• Normalization of the input data and within the network pos-

sible

Batch Normalization
• Add an extra layer to normalize the input for the following

layer
• Calculate mean µB and standard variation σB from the

mini-batch and produce normalized output

x̃i =
xi − µB,i√
σ2
B,i + ε

7

• Use two trainable weights γ, β for scaling the normalized
input

• For testing: replace µB , σB with µ, σ of the training set
• Convolutional layers are special, because batch normaliza-

tion computes scalar µ, σ for every channel instead of vectors
• Nobody really knows why this is helpful, but practical evi-

dence is overwhelming
• There exist many variants like calculating µ, σ over activa-

tions, layer, groups etc.
⇒ Original motivation: BN reduces the Internal Covariate

Shift
Internal Covariate Shift
• ReLU is not zero-centered
• Initialization and input distribution might not be normal-

ized

→ Input distribution shifts over time

• Effect amplifies for deeper networks, which leads to a slow
learning rate

Dropout and Dropconnect

• Randomly set activations
to zero with prob. 1 - p

• Test-time: multiply activa-
tion with p

• Generalizes Dropout with
setting connections to zero

• Less efficient implementa-
tion

Initialization
• Initialization matters for non-convex functions, which we

can generally assume in context of neural networks

Basic initialization
• Bias

– Generally, bias units can simply be initialized to zero
– When using ReLU, a small positive constant is better

because of the dying ReLU issue
• Weights

– Need to be random to break symmetry
– It is not a good idea to initialize them with zeros be-

cause than the resulting gradient is zero!
– Similar to the learning rate their variance influences

the stability of learning
⇒ Small uniform/Gaussian values work

Xavier initialization
• Assumption: We have linear neurons
• Then we can calibrate the variances for the forward pass by

initializing with a zero mean Gaussian N (0, 1
fan in) where

fan in is the input dimension of the weights
• For the backward-pass we need N (0, 1

fan out) where fan out
is the output dimension of the weights

⇒ Hence we average those two to N (0,
√

2
fan in+fan out)

He initialization
• Assumption of linear neurons is a problem

⇒ For ReLU it’s better to use N (0,
√

2
fan in)

Transfer Learning
• Some datasets are very small
• Reuse models trained

– for a different task on the same data
– on different data for the same task
– on different data for a different task

• For weight transfer in convolutional layers (extract features)
we expect the less task-specific weights to be in earlier leay-
ers
→ We cut the network at some depth of the feature learn-

ing part
⇒ Those parts can be fixed with η = 0 or fine-tuned

• Also found to be beneficial if we transfer from RGB images
to X-ray (sufficient to simply copy the input three times)

⇒ Always use transfer learning!
Multi-Task Learning (MTL)

• So far we had one network for one task and discussed hoow
to reuse them

• Learning them simultaneously can provide a better under-
standing of the shared underlying concepts

• Idea: Train a network simultaneously on multiple related
tasks

• Adapt loss function to assess performance for multiple tasks
• Reduces risk of overfitting on one particular task
• Hard parameter sharing

– Several hidden layers shared between all tasks
– Additional task-specific output layers
– Multi-task learning of N tasks reduces chance of over-

fitting by an order of N
• Soft parameter sharing

– Each model has its own parameters
– Instead of forcing equality, distance between parame-

ters is regularized as part of the loss function
Auxiliary tasks

• Additional tasks have own purpose or are just auxiliary to
the original task

• Example: Facial Landmark Detection
→ Simultaneously learn to estimate landmarks and “subtly”

related task like face pose, glasses, smiling, gender
• Certain features difficult to learn for one task but easy for

a related one
• Auxiliary tasks can help to “steer” training in a specific

direction
• Include prior knowledge by choosing appropriate auxiliary

tasks
• Tasks can have different convergence rates (task-based early

stopping possible)

8

Common Practice

1. Check your implementation before training: Gradient, ini-
tialization, ...

2. Monitor training process continuously: training/validation
loss, weights, activations

3. Stick to established architectures before reinventing the
wheel

4. Experiment with few data sets, keep your evaluation data
safe until evaluation

5. Decay the learning rate over time
6. Do random search (not grid search) for hyperparameters
7. Perform model ensembling for better performance
8. Check for significance when comparing classifiers

Class Imbalance
• Different classes are available with very different frequencies

in the dataset
→ Hard challenge for machine learning algorithms

• Sometimes, learning to always assign to the same class can
lead to an extreme high accuracy

• Problem: Measures like accuracy, L2 norm, cross-entropy
do not show imbalance

• Different resampling strategies:
– Undersampling: Just use a subset of the overrepre-

sented class such that all classes are now presented
equally often

→ Disadvantage: Not all data is used for training, which
may lead to underfitting

– Oversampling:Use sample from underrepresented class
multiple times such that you can use all data

→ Disadvantage: Can lead to overfitting
• Underfitting caused undersampling can be reduced by taking

a different subset after each epoch
• Data augmentation can help to reduce overfitting for under-

represented class
Evaluation

• Remember: Labels are set by human, hence it does not have
to be correct

• Different ways of measuring performance:
– Accuracy: ACC = #CorrectPredictions

TotalPrediction
→ Fraction of predictions our model got right

– Precision: PRE = #CorrectPositives
TotalPositives

→ What proportion of positive identifications was actu-
ally correct?

– Recall: REC = #CorrectPositives
TotalrealPositives

→ What proportion of actual positives was identified cor-
rectly?

– ROC Curve: Graph showing the performance of a clas-
sification model at all classification thresholds

• Multiclass classification: Top-K error, True class label is not
in the K classes with the highest prediction score

• k-fold cross validation: split data in k folds, train and test,
repeat k times

• Measuring Significant Difference: Run training for each
method/network multiple times and determine whether per-
formance is significantly different e.g. Student’s t-test

Architectures

Different interesting Architectures

• LeNet-5 (1998): First convolutional deep network
• AlexNet (2012): Winner of the ImageNet 2012 challenge,

used GPU to reduce training time, Introduced ReLU
• Visual Geometry Group: Used small kernel sizes, but is hard

to train
• GoogleNet: 22 layers, use inception modules to decide be-

tween convolution and pooling
• ResNeXt: Aggregated residual transformations
• DenseNets: Layer input: feature-maps of all preceding lay-

ers, hence one can reuse features
• SENet: Explicitly model channel interdependencies : chan-

nels have different relevance depending on content

Bottleneck layer A bottleneck layer is a layer that contains few
nodes compared to the previous layers. It can be used to obtain
a representation of the input with reduced dimensionality.

• Features are often correlated
→ Redundancy can be removed by 1 × 1 filters

• Reduced the number of feature maps that have to be con-
volved

⇒ Less multiply and add operations

Deeper Models

→ Observation: Top 5 Error can be decreased with the help of
deeper networks

→ Advantage of going deeper: Increasingly abstract features
and exponential feature reuse

The evolution of Inception

• Change basic inception layer: Replace 7 × 7 and 5 × 5 filters
by multiple 3 × 3 convolutions

• Efficient grid size reduction with introducing additional
striding

• Improvements: RMSProp ,Bach-normalization also in the
FC layers of auxiliary classifiers and Label-smoothing regu-
larization (exchange label distribution)

So why not going deeper

• Disadvantage: Deeper models tend to have higher training
and test error than shallower models, which cannot only be
caused by overfitting

• Possible reasons:
– Vanishing gradient problem which can tried to be

solved with ReLU or a proper initialization
– Internal co-variate shift which can tried to be solved

with batch normalization or the use of ELU/SELU
– Degradation problem: poor propagation of activations

and gradients

Solution for deeper networks: residual units

• Non-residual nets learn to map F (x)
• Instead we could learn residual mapping F (x) = H(x) + x

9

• Sometimes it can be useful to skip parts of the network
→ Motivation: Avoid the problem of vanishing gradient
→ Having skip connections allows the network to more easily

learn identity-like mappings
• Can be used as bottleneck that utilises 1 × 1 convolutions
• Idea is to make residual blocks as thin as possible to increase

depth and have less parameters
→ Specially useful for deep networks and large input image size

⇒ Training / validation error of deeper nets is now lower
Ensemble view of ResNets

• ResNets behave like ensemble of shallow networks
• xl+1 = xl +Hl+1(xl)
• Residual networks allow removal of connections without sig-

nificant drop in performance

Classical Feed-forward Network vs. Residual Networks
Classical feed-forward network:

• At layer level: one single
path

• At neuron level: many dif-
ferent paths of same length

→ Exponential in # layers
• Can compute entirely new

representations

Residual networks:
• At layer level: 2n different

paths
• At neuron layer: many

different paths of varying
length

• Do not compute entirely
new representations

Deep Networks with Stochastic Depth
• Stochastic depth: layer-wise dropout, i.e., drop random lay-

ers and bypass with identity
→ Ensemble of exponentially many small networks

• Network are short during training
→ Decreased training time

Connection of Inception and ResNet
• Faster convergence and better performance than without

residual connections

Wide residual networks
• Decrease depth, increase width of ResNet blocks
• Use dropout in residual block
• Power not from depth but from residual connections

Learning Architectures
• Network should be optimized with respect to accuracy and

FLOPs
→ Can be done with Grid-search, but this is too time-

consuming
• Alternative: Use reinforcement learning with the help of

RNNs to generate model descriptions of networks

Recurrent Neural Networks

Motivation
• So far we have feedforward neural networks, which can han-

dle one input at once
• But lots of tasks are sequential or time-dependent
→ Snapshots are often not informative enough
⇒ Temporal context is important

• Simple approach would be to feed the whole sequence into a
big network. Bad idea because of inefficient memory usage,
difficult training and still no real-time dimension

• Better approach is to model a sequential behavior within
the architecture

Difference between RNNs and FFNNs
• Feedforward networks only feed information forward
• With recurrent neural networks, we can:

– model loops
– model memory and experience
– learn sequential relationships
– provide continuous predictions as data comes in

• RNNs allows us to model real-time structure
The Elman network

• Current input xt multiplied by weight matrix
• New: Additional input ht−1 (hidden state) of the unit
→ Can be seen as feedback loop that uses information from

present and recent past to compute the output yt
• Unfolded RNN unit: sequence of copies of the same unit (=

same weights)
→ Previous input can influence current output

• Central questions: How to compute the update of the hidden
state and how to combine hidden state and input to produce
the output?

• The hidden state is updated according to the following for-
mula:

ht = tanh(Whh · ht−1 +Wxh · xt + bh)

• The output is calculated according to the following formula:

yt = σ(Why · ht + by)

→ Remember: σ ≡ Sigmoid activation function

10

Basic Architectures

Examples:
• One to one: Image classification (classic feed-forward)
• One to many: Image captioning
• Many to one: Sentiment analysis
• Many to many: Video classification

→ For deep RNNs, stack multiple units!
Backpropagation through time (BPTT)

• Variant of backpropagation to train unfolded networks
• Compute the forward pass for the full sequence to calculate

the loss

Algorithm 1 Forward pass for RNNs

Input: Sequence X = {x1, . . . , xT }
1: for t from 1 to T do
2: ut = Whh · ht−1 +Wxh · xt + bh
3: hT = tanh(ut)
4: ot = Why · ht + by
5: yt = σ(ot)

• Compute backward pass through full sequence to get gradi-
ents for performing the weight update

Algorithm 2 Backpropagation trough time

1: for t from T to 1 do

2: ∇ot = σ′(ot) ·
∂L

∂yt
(ŷt, yt)

3: ∇Why,t = ∇othTt
4: ∇by,t = ∇ot
. For t = 0,T we only need the 2. part of the following sum

5: ∇ht = (
∂ht+1

∂ht
)T∇ht+1 + (

∂ot
∂ht

)T∇ot
6: ∇Whh,t = ∇ht · tanh′(ut) · hTt−1
7: ∇Wxh,t = ∇ht · tanh′(ut) · xTt
8: ∇bh,t = ∇ht · tanh′(ut)
9: Update weights by summing them up for all time steps

• We have to sum up all calculated derivatives because un-
rolled units are a nwetwork with shared weights!

• Often used loss function: cross-entropy loss

L(ŷ, y) =
∑

L(ŷt, yt)

• BPTT: One update requires backpropagation through a
complete sequence

→ Single parameter update is very expensive!
• Naive solution: Split long sequences into batches of smaller

parts
⇒ Might work ok in practice, but blind to long-term depen-

dencies
• Better solution: Truncated backpropagation through time

(TBPTT)
– Main idea: keep processing sequence as a whole and

adapt frequency and depth of update
→ Every k1 time steps, run BPTT for k2 time steps

⇒ Parameter update cheap if k2 small
• Short term dependencies work fine now, Contextual infor-

mation nearby and can be encoded in hidden state easily
• Still a problem: Long-Term dependency’s

Long-Term Dependency Problem with Basic RNNs
• Harder to connect relevant past and present inputs for longer

time spans
• Old acquaintances: vanishing and exploding gradients

– Layers and time steps of deep RNNs are related
through multiplication

→ As usual, gradients tend to vanish or explode
⇒ Exploding gradient relatively easy to solve by truncat-

ing gradient
• Additional problem: memory overwriting, because hidden

state is overwritten each time step
→ Detecting long-term dependencies even more difficult
Long Short-Term Memory Units (LSTMs)

• Designed in 1997 to solve vanishing gradient and learning
long-term dependencies

• Main idea: introduction of gates that control writing and
accessing “memory” in additional cell state

What is the LSTM cell state
• Models forgetting and memorizing
• Undergoes only linear changes: no activation function!
• ct can flow through a unit unchanged

Update steps:
1. Forget gate: Forgetting old information in cell state

• Key idea: forgetting and memorizing information in
separate steps

• ft controls how much of the previous cell state is for-
gotten:

ft = σ(Wf · [ht−1, xt] + bf)

2. Input gate: Deciding on new input for cell state
• Combination of input and hidden state on two paths:

it = σ(Wi · [ht−1, xt] + bi)c̃t = tanh(Wc · [ht−1, xt] + bc)

3. Computing the updated cell state
• New cell state: Sum of remaining information and new

information from input and hidden state
• Calculated with element-wise multiplication

ct = ft � ct−1 + itc̃t

4. Computing the updated hidden state
• Important: Cell state and hidden state are updated

separately
• The output yt directly depends on the hidden state ht

ot = σ(Wo[ht−1, xt] + bo)

ht = ot � tanh(ct)

yt = σ(ht)

11

Gated Recurrent Units (GRU)
• Variant of the LSTM unit, but simpler and fewer parameters
• LSTM great idea, but many parameters and difficult to train
• As with LSTM, you have more control over the memory of

the hidden states using gates
→ Main difference: no additional cell state

• Gates allow capturing diverse time scales and remote depen-
dencies

Update steps
1. Reset gate: Determines the influence of the previous hidden

state
rt = σ(Wr[ht−1, st] + br)

2. Update Gate: Determines the influence of an update pro-
posal on the new hidden state

zt = σ(Wz[ht−1, xt] + bz)

→ zt close to 0: ignore new input
3. Proposing an updated hidden state

• Combination of input and reset hidden state
• If rt is close to 0: ignore previous hidden state

h̃t = tanh(Wh[rt � ht−1, xt] + bh)

4. Computing updated hidden state: Update gate controls
combination of old state and proposed update

ht = (1− zt)� ht−1 + zt � h̃t

→ Units learning short-term dependencies have restrictive reset
gates

→ Units learning long-term dependencies have restrictive up-
date gates

Comparison between the different units
• Simple RNNs still have many problems like difficult

gradient-based training, overwritten hidden states and no
modeling of long-term dependencies

• LSTM and GRU are more advanced structures with similar
performance

• Similarities of the advanced structures:
– Control information via gates
– Can capture dependencies of different time scales
– Additive calculation of states preserves errors during

backpropagation
→ More efficient training possible

• Differences
LSTM GRU
Seperate hidden and cell
state

Combined hidden and cell
state

Controlled exposure of
memory content through
output gate

Controlled exposure of
memory content through
output gate

Independent input and
forget gate

Common update gate for
the hidden state

→ New memory content
independent of current
memory

→ New memory content
depends on current
memory

Sampling strategies for RNNs
• RNN actually computes probability distribution of the next

element
• Greedy search:

– Concept: At each point, pick the most likely element
– Generates exactly one sample sequence per experiment
– BUT: No lookahead possible

• Beam search:
– Concept: Select k most likely elements
– Out of all possible sequences that have one of these k

elements as a prefix, take k most probable ones
– Can generate k sequences in one go

• Random sampling:
– Idea: Sample next word according to output probabil-

ity distribution
– Creates very diverse results, can look too random
→ Use temperature sampling

Visualization and Attention Mecha-
nisms

Motivation
• Neural networks do not have to be black boxes
• We need visualization to communicate results between re-

searchers, identify issues and faulty data during training and
to understand how our network is learning

Network Architecture Visualization
• It is important to present the architecture of a network,

because it can be the main reason for good performance
• Node-link diagrams:

– Neurons are the nodes, weights are edges
– Detailed representation, focus on connectivity
– Only for small (sub-)networks, building blocks

• Block diagrams:
– Each layer is a solid block and we have just a single

connection between layers
– Blocks represent layers or mathematical operations
– Arrows show the direction of flow
– Blocks can have different granularity – often hierarchi-

cal descriptions
– Recommendation: Pick one that clearly represents

what you want to show
Visualization of Training

• Most DL libraries provide tools to record and monitor train-
ing - use them!

Visualization of Parameters
Motivation

• Networks learn representation of the training data
• We should take a look at it to investigate unex-

pected/unintuitive behavior
→ Potential causes: Focus on “wrong” features, different noise

properties
⇒ (Anecdotal) example: Identification of tanks in photos

(Confounds example)
Confounds

• Problem: Networks may learn correlated features instead of
identify the correct task

• Important: Not a fault in the learning algorithm, but in the
data!

→ ML will focus on the most discriminative features!
• Example: Detects whether instead of tanks
• Good news: If confounder is known, we may be able to

correct for it
→ Best strategy: Be aware and avoid!

12

Adversarial Examples

• With optimization, we can construct pictures without visible
difference, but different classification

→ Humans: Optical Illusions
• Adversarial examples can be generated to cause a specific

mistake
• Example: Toaster sticker

Direct Visualization of Learned Kernels

• Idea: Plot learned filter weights directly
• Easy to implement, easy to interpret for the first layer
→ Apart from that, mostly uninteresting

Visualization of Activations

• Idea: Instead visualize activations generated by kernels
• Strong response: feature is present, weak response: feature

is absent
• Possible for any layer/neuron in the network, with different

resolutions
• Channels may correspond to specific features, e.g., faces:

• Drawback: No insight into what exactly caused the re-
sponse, coarse representation

Investigating Features via Occlusion

• Idea: Move a masking patch around the input image
• If occlusions cause a significant drop in prediction confi-

dence: area important for classification
→ Can identify confounds, e.g. wrong focus

• Shift mask over input generates probability heatmap for a
class

Investigating Features via Maximally Activating Images

• So far: Looking at activations for single images
• More general question: Which inputs cause high activa-

tions?
• Idea: Find input that activates a specific neuron the most
• Benefits: Easy to implement, “false friends” are compara-

tively easy to find
• Drawbacks: Neurons don’t necessarily have semantic mean-

ing by themselves, rather ’basis vectors’ of a representation

t-SNE visualization of CNN
• t-SNE: t-Distributed Stochastic Neighbor Embedding

– Performs dimensionality reduction for high-
dimensional datasets

– Result: 2-D embedding that respects high-dimensional
distances of activations

• Idea: Understand which images the network regards as sim-
ilar

• Compute activations of the last layer and group inputs with
similar activations

• Can help to assess whether the network grasps the correct
concept of similarity

• Drawback: 2-D embedding of very high dimensional space,
difficult to interpret

Gradient-Based Visualization
Backpropagation for Visualization

• Question: Which pixels are most significant to a neuron?
Which would have most affected neuron output, had they
been different?

→ For which pixels xi is ∂neuron
∂xi

large?
• Backpropagation can be used to compute this gradient for

a specific neuron
• Remember: we need a loss that we can backpropagate, hence

we use a pseudo loss fn(x)
→ fn is the activation of an arbitrary neuron of a layer
Feature Visualization – Deconvnet

• Uses a reversed network (deconvnet)
• Input is trained network and a image, than we choose one

activation and set all others to zero
→ No training involved here!

• May reveals feature map focuses on grass / background in-
stead foreground object

13

Guided Backpropagation

• Mix between Deconvnet and Backpropagation
• Idea: Positive gradients = features the neuron is interested

in / Negative gradients = features the neuron is not inter-
ested in

→ Set all negative gradients in the backpropagation process to
zero

• Interesting for higher-layer neurons, because it can reveal
neurons that focus on very abstract features

Visual comparison of the three visualizations:

Saliency maps

• Instead of investigating what influences neurons, investigate
impact of pixels on class score

• Pseudo loss is now unnormalized class score
• Interesting observation: Saliency map “localizes” dog in the

image, even though the network was never trained on local-
ization!

Parameter Visualization via Optimization
Google DeepDream / Inceptionism

• Intuition: Attempt to understand the inner workings of the
network: What it ’dreams’ about when presented with im-
ages.

• Idea: Use arbitrary image or noise as input. Now, instead of
adjusting network parameters, change image towards high
activations of a complete layer

→ Search for images, the layer finds interesting
• Abstract features emerge
• This can reveal hidden weaknesses in the NN classification

process

Inversion

• Inversion attempts to construct an image from a given layer
activation

• Clearly visible features in the reconstructed image corre-
spond to features which matter most to the CNN

• Inversion can be made till layer 5-6

Attention Mechanisms
What is Attention?

• Humans process data by actively shifting their focus
• Different parts of an image carry different information and

can be context sensitive
• Remember specific, related events in the past
• Helps to focus on one task
• We saw: Saliency maps learn attention implicitly
• Attention alone very powerful (Transformer)

Sequence to sequence models (Seq2Seq)
• Encoder/decoder architecture, typically RNNs
• Encoder network receives a input sequence and computes

hidden states ht
• Decoder network receives context vector ht, computes own

hidden state and then generates the output sequence
→ Split allows different length in input/output
⇒ The encoding of complete content is difficult

• We can realize attention for Seq2Seq
→ Problem: Context vector provides no access to earlier inputs
⇒ Solution: Define a dynamic context vector as combination

of all previous hidden states
• Uses a score function represented by a trainable single layer

FCN
→ Determines alignment: Which inputs are important for

which outputs
⇒ Alignment scores allow interpretation

Soft Attention vs. Hard Attention
• So far: Attention is computed over all patches/inputs:

Soft/global attention
+ Model is fully differentiable
- Not effective/efficient for large inputs

• Alternative: Hard attention, fixed size glimpses on the in-
put,

+ Lower computation times
- Not differentiable, requires e.g. reinforcement learning

techniques to train
Show-Attend-Tell

• Task: Automatic generation of image captions

14

• Different elements and their relationship in the image trigger
different words

→ Attention mechanism to improve caption quality
• Attention weighs CNN feature maps according to caption

produced so far

Self-Attention
• Computes attention of sequence to ’itself’
• Allows to enrich representation of tokens with context infor-

mation
• Important for machine reading, question answering, reason-

ing ...
Attention is all you need (AIAYN)

• Machine translation based only on attention, no convolution
or recurrence

• Core idea: Iteratively improve representation by self-
attention

• Each input token is translated into vector of same length
using an embedding algorithm

• Self attention: For each token, compute
– query q: what a token is looking for
– key k: description for query
– value v: potential

• Multi-Head attention: Multiple attention vectors per token
→ Recombination uses a fully connected layer

• Allows for integration of knowledge independent of distance
• Positional encoding still allows to learn convolution-like

steps
• State-of-the-art performance and faster training

Deep Reinforcement Learning

Sequential Decision Making
• Also called Multi-armed bandit problem
• Consists of three parts:

– An Action a at time t which can be chosen from a set
A

– A reward rt which is generated by an unknown proba-
bility density function p(r | a)

– A policy π(a) which formalizes how to choose an action
a

• Aim: Find an action a that produces the maximum expected
reward over time (maxa E[p(r | a)])

• Difference to supervised learning: No feedback on what ac-
tion to choose

• We can form a one-hot encoded vector r which reflects which
action from a caused the reward

→ Estimate the joint pdf: Qt(a) = 1
t

∑
ri

• Qt(a) is called action-value function, which changes in every
step

• Reward is maximized by a policy π(a) which chooses
maxaQt(a)

→ Exploitation of a known good action
⇒ This deterministic policy is called greedy action selection

• Therefore we need to obtain samples ra
→ This means we cannot follow the greedy action selection

policy for learning
⇒ We need to explore by selecting other moves to be poten-

tially better
• To sample discrete actions from π(a), we can use different

policies:
– Uniform random for a complete random choice in each

iteration

π(a) =
1

|A|
– Epsilon greedy with ε < 1 to choose sometimes a new

strategy

π(a) =

{
1− ε a = maxaQt(a)

ε/(n− 1) else

– Softmax with decreasing temperature parameter to de-
crease exploration over time

π(a) =
eQt(a)/τt∑
eQt(a)/τt

Reinforcement Learning
Motivation

• Extension of the multi-armed bandits problem:
– We introduces a state of the world at any time t: st
→ Rewards now additionally depend on the state st

– In the full reinforcement learning problem, actions in-
fluence the following state

→ This setting is known as contextual bandit
Markov Decision Processes

• Generally, policies now depend on st
→ We can extend the uniform random policy to be independent

from st

15

⇒ However there’s no reason to believe that this policy is any
good

What is a good policy?
• Preliminary we have to state two kinds of tasks, episodic

and continuing tasks
→ Can be unified by using a terminal state in episodic tasks

• Goal is to maximize the future return

max
π(st,at)

gt =

T∑
k=t+1

γk−t−1rk

→ γ is a discount reducing influence of rewards far in the future
Policy Iteration

• We introduce the state-value function Vπ(s) to predict future
reward

Vπ(s) = Eπ[gt | st]

• By using greedy action selection policy on this Vπ(s), we can
get a better policy

→ Vπ(s) is used to guide our search for good policies
→ Extend the action-value function

Qπ(s, a) = Eπ[gt | st, at]

• Note: There can only be one optimal V*(s), which can be
obtained by maximizing is in terms of the policy

• Policies can now be ordered: π ≥ π′ if and only if Vπ(s) ≥
Vπ′(s) ∀s ∈ S

• More than one optimal policy is possible, because every pol-
icy with Vπ = V ∗ is optimal

→ Given either V ∗ or Q∗ an optimal policy is directly obtained
by greedy action selection

⇒ Still need to compute V ∗(s), Q∗(s, a)
• For this the Bellman equations can be utilized
• They are consistency conditions for the value functions
• The Bellman equations form a system of linear equations

which can be solved for small problems
• Better: Iteratively solve, by turning the Bellman equations

into update rules
• However if we use greedy action selection an update of Vπ(s)

is simultaneously an update of π(s)
• Stop iterating if the policy stops changing
• According to the policy improvement theorem, the greedy

action selection together with updating is guaranteed to
work for improving the policy

• Both policy iteration and value iteration require using the
updated policies during learning to obtain better approxi-
mations to V ∗(s)

→ For this reason we call them on-policy algorithms
• Additionally we assumed the state-transition pdf and reward

pdf are known
Other Solution Methods

• Monte Carlo Techniques: Off-policy - learns V*(s) by fol-
lowing any arbitrary π(s, a)

• Temporal Difference Learning: On-policy, which does not
need information about dynamics of the environment

• Q Learning: Off-policy and a temporal difference type of
method

→ None of those need information about dynamics of the en-
vironment

• Use the universal approximation theorem an parameterize
the policy

→ Known as policy gradient
Deep Reinforcement Learning with Deep Q Learning
Atari Games

• Project of Google DeepMind in 2013
• Idea: Let a neural network play Atari games!
• Input: Current and three subsequent video frames from

game
• Processed by network trained with reinforcement learning
• Goal: learn best controller movements

• Deep Q-network: Deep network that applies Q-learning
• 18 outputs associated with an action
→ Each output estimates optimal action value for its action

given the input
• Instead of label and cost function, update to maximize re-

ward
• ε-greedy policy with ε decreasing to a low value during train-

ing
• Uses mini-batches to accumulate weight updates
• Problem: The target is a function also containing wt
→ Target changes simultaneously with the weights we want to

learn!
⇒ Training can oscillate or diverge

• Idea: Use a second target network, where after k steps the
weights of action-value network are copied to a duplicate
network and fixed

• Use experience replay to reduce the correlation between up-
dates

– Memory accumulates experiences
– To update the network, draw random samples from

memory, instead of taking the most recent ones
→ Removes dependence on current weights and increases

stability
Alpha Go

• Exhaustive search is infeasible!
• First improvement compared to a full tree search: Monte

Carlo Tree Search
→ Idea: Run many Monte Carlo simulations of episodes (=en-

tire Go games) to select action (=where to place a stone)
→ Starting from a root node representing the current state,

MCTS iteratively extends the search tree
⇒ Problem: Estimation via MCTS not accurate enough for

Go.
• Deep Neural Networks for Go with three different networks:

– Policy network: Suggests the next move in leaf nodes
for extension

– Value network: Given the current board position, get
chances of winning

– Rollout policy network: Guide rollout action selection
• Alpha Go Zero: Solely trained with reinforcement learning

and playing against itself

16

Unsupervised Deep Learning

Motivation
• We can have a huge number of variations between different

datasets (e.g. size, complexity)
• Sometimes we do not have enough labeled data, hence we

use unsupervised learning
• Applications: Clustering, network initialization, dimension-

ality reduction
Autoencoder
Concept of AE

• Special case of feed-forward neural networks
• Consists of two parts: Encoder (y = f(x)) and Decoder

(x̂ = g(y))
→ We train for x̂ = x, AE tries to learn an approximation of

the identity
• We can use known loss functions according to the distribu-

tion of your x̂
• ’Traditional’ AEs compute a deterministic feature vector de-

scribing the attributes of the input in latent space

• We can enforce information compression by using undercom-
plete AE

→ Prevent network from simply copying the input
• We can also model sparse autoencoder, which includes more

hidden units compared to the input units
→ You have to add a additional regularization to enforce spar-

sity in the activations
• AE acts as bottleneck layer
• Other variations: Convolutional AE, Denoising AE (regu-

larization effect), stacked AE

Variational Autoencoders
• Difference to traditional AEs: use a variational approach to

learn the latent representation
• Linked to the content generation problem
• A variational autoencoder can be defined as being an au-

toencoder whose training is regularised to avoid overfitting
and ensure that the latent space has good properties that
enable generative process

→ It allows to describe the latent space in a probabilistic man-
ner

→ Describe each latent attribute as probability distribution
⇒ Allows to model uncertainty in the input data

• Representation as probability distribution enforces a contin-
uous, smooth latent space representation

• Training variational AE is problematic, because the network
contains a sampling operator

• We change the interpretation of the activations in the red
and green box

→ Mean and variance of our latent distribution

• Because of the randomness of the sampling operator, we
cannot backpropagate at this position

• Instead of evaluating to a single point, we evaluate to a
distribution and choose a point randomly for the decoder

• For using backpropagation, we have to add a path by
reparametrization:

• This way, we can make it deterministic
• New data can be generated by sampling from distributions

in the latent space with reconstructing them by decoder
• Pros: Principled approach to generative models and latent

space representation can be useful for other tasks
• Cons: Only maximizes lower bound of likelihood and sam-

ples in standard models often of lower quality compared to
GANs

Comparison of AE:

Generative Adversarial Networks
GANs are generative models that use supervised learning to ap-
proximate an intractable cost function.
Principle of GANs

• We play a game between a generator and a discriminator
• Generator creates a picture and the discriminator has to tell

whether the incoming data is real or fake

• D is trained to distinguish real data samples from fake ones
• G is trained to fool D
→ Equilibrium is a saddle point of the discriminator loss
⇒ Summarize game with a value function specifying the dis-

criminator’s payoff and play minimax game
• We can only in theory calculate an optimal D and G
• Hence we use GANs as approximation mechanism which use

supervised learning

17

• Loss function: G maximizes log-probability of D being mis-
taken

→ Heuristically motivated: fights vanishing gradient of G when
D is ’too smart’

• Other popular loss functions:Feature matching loss, Wasser-
stein Loss

– G trained to match expected value of features f (x) of
intermediate layer of D

→ The expected output of the generator should be the
same as the original input

– Prevent ’overtraining’ of G on current D
• GANs are pretty good at generating low-resolution images
• High-resolution images are much more difficult!
→ Subsequently increase resolution and add detail with pyra-

mid of GANs
GANs in Comparison to Other Generative Models

• Ability to generate samples in parallel
• Very few restrictions because e.g no markov chain needed
• No variational bound is needed
• GANs known to be asymptotically consistent since the

model families are universal function approximators
Conditional GANs

• Problem: Generator creates a fake generic image : is not
specific for a certain condition/characteristic

• Example: text to image generation – image should depend
on the text

→ Idea: Provide additional vector y to networks to encode
conditioning

• Generator G receives the latent vector z and a conditioning
vector y

• Discriminator D receives x and also y
• Example Face Generation: Generator/Discriminator learn

to operate in modes:
– Generator learns to generate a face with a certain at-

tribute
– Discriminator learns to decide whether the face con-

tains attribute
• Image To Image is just a Conditional GAN!

Cycle Consistent GANs
• Image to Image GAN should generate plausible results w.r.t.

input
• Paired data difficult/impossible to obtain
• Cycle consistency loss: Couple GAN with trainable inverse

mapping
• Two discriminators DY and DX
• Cycle consistency ensures that both versions are not recog-

nizable by D
→ We achieve better forth and back translation

Deep Convolutional GANs (DCGAN)
• Replace any pooling layer with strided convolutions (D) and

transposed convolution (G)

• Remove fully connected hidden layers for deeper architec-
tures

• G: Use ReLU activation except for output layer which uses
tanh

• D: LeakyReLU activation for all layers
• Use virtual batch normalization: Create reference batch R

of random samples chosen and fixed once at the start of
training

Mode Collapse
• G rotates through the modes of the data distribution
• Never converges to a fixed distribution
• Problem: min-max not exchangable!
• D in inner loop: convergence to correct distribution
• G in inner loop: place all mass on most likely point
• Solutions: Minibatch discrimination or unrolled GANs
• Minibatch discrimination:

– Intuition: Allow D to look at multiple samples in com-
bination to help G avoid collapsing

– Extract features from intermediate layer
– Add minibatch layer that computes for each feature a

similarity to all other samples of the mini-batch and
concatenate similarity vector to each feature

– D still outputs 0/1 but now uses the similarity to all
samples in the mini-batch as side information

• Unrolled GAN:

– Ideally: G∗ = minG maxD V (G,D)
– But essentially, we ignore the max operation when com-

puting G’s gradient
– Build computational graph describing k steps of learn-

ing in D
– Back-propagate through all k steps when computing

G’s gradient

StackGANs
• Task: Given some text, generate a fitting image
• Decompose problem: Sketch-refinement using a two-stage

conditional GANs
• Stage-I GAN: Draws low resolution images
• Stage-II GAN: Add Generates high resolution images

18

Segmentation and Object Detection

Segmentation
Motivation

• Goal: partition images into different segments
• Segments are regions that delineate meaningful objects
• Label regions with an object category label
• Each pixel gets a semantic class
→ Pixel-wise dense classification

• Applications: Medical Imaging, Autonomous driving,
robotics

Evaluation Metrics
• Usefulness of segmentation depends on many factors: Exe-

cution time, memory footprint and quality
• Quality of a method can be assessed by different metrics
• Assumptions:

– k + 1 classes including void or background
– pij is the amount of pixels of class i inferred to belong

to class j
→ pij represents the number of true positive

• Pixel Accuracy (PA):Ratio between the amount of correctly
classified pixels and the total number of pixels

• Mean Pixel Accuracy (MPA): Average ratio of correctly clas-
sified pixels per-class basis

• Mean Intersection over Union (MIoU): Ratio between the
intersection and the union of two sets

Fully Convolutional Networks for Segmentation
• Transform fully connected layers to convolutional layers
• Output independent of size
• Main problem: Segmentation is coarse
• Use encode/decoder network for higher resolution
• Network has to learn to decode (map) the output of the

encoder to pixel-wise predictions

• Examples: SegNet, U-net
Upsampling

• Decoder requires upsampling to enable pixel-wise prediction
• Different options would be: unpooling, transpose convolu-

tion
• Nearest neighbor unpooling: Duplicate the value of the ele-

ment for the region

• Bed of Nails: Take the one value and make the others zero

• Using max pooling indices: Save location of max

• Transpose convolution: learnable upsampling, where filter
moves 2 pixels in the output for every 1 pixel in the input

→ Transpose convolution is backward pass of normal convolu-
tion

• Transpose convolution has uneven overlap when the kernel
size is not divisible by the stride

• In practice: avoid this case by choosing dividable kernel size
Integrating Context Knowledge

• Semantic segmentation requires integration of information
from various spatial scales

→ Need to balance local and global information
⇒ Local information crucial to achieve good pixel-level accu-

racy
⇒ Global context of the image enables to resolve local ambi-

guities
• CNNs struggle with this balance

Alternative methods:
• Long et al.’s Fully Convolutional Networks

– Idea: Add links combining the final prediction and pre-
vious (lower) layers with finer strides

– Upsampling using learnable transposed convolutions
– Additional 1 × 1 convolution after pooling layer, pre-

dictions are added up
→ Make local predictions with global structure

– Refinement of coarse segmentation
• SegNet

– Decoder: Upsampling and convolution layers followed
by softmax

– Each upsampling layer corresponds to a max-pooling
layer in encoder

→ provides context information

• U-Net
– Network consists of encoder and decoder
– Encoder: A contracting path to capture context and

follows a typical architecture of a CNN
– Decoder: A symmetric expansion path for localization.

It consits of unsampling of feature maps followed by
a 2 × 2 convolution that halves the number of feature
channels. In addition we have a concatenation with the
corresponding cropped feature map from the contract-
ing path

– The training strategy relies on use of data augmenta-
tion

– Include skip connections

19

• Adversarial Networks for Segmentation
– Optimize Segmentor with hybrid loss function with two

terms
→ Term 1: Usual pixel-wise multi-class cross-entropy for

semantic segmentation
→ Term 2: Loss based on min-max game with Discrimi-

nator
– Segmentor is trained both on the segmentation and on

fooling the discriminator
– Multi-task learning with adversarial task

Object Detection
• Goal: Object localization and classification
• Classical Solution: Hypothesize bounding boxes, then Re-

sample selected boxes an last apply classifier
• Bounding Box: Smallest box by some measure that fully

contains the object in question

Modern Approaches
• Sliding window

– Classify each possible window by CNN
– Use multiple image scales to detect objects of different

sizes
– Problem: Large number of predictions, but many with

low confidence
→ Keep only high confidence areas
+ Trained classification network can be used for object

detection directly
- Computationally inefficient: One pass through the net-

work for every patch!

• Region-based Detectors
– First find interesting regions, then classify by CNN
– We improve efficiency by only considering interesting

regions (ROIs)
– ROI pooling: Polling the regions of interest with max

pooling
– Candidate objects by grouping pixels of similar texture

or color
– Apply for different sized windows
– Produces only a few object proposals in constrast to

number of possible windows
– Essentially a form of segmentation
– For each region proposal window, wrap it to standard

window size, use CNN for feature extraction and clas-
sify it

+ Improved retrieval rate at that time (2013) by more
than 30%

- Much faster... but still slow and not end to end
– Speed up: Pass full image through the network and

use Feature maps. Apply region proposals to last conv
layer, then use Spatial pyramid pooling layer to pool
to fixed size using max-pooling

• Single-Shot Detectors
– Joint detection and classification
– You Only Look Once (YOLO) algorithm: Combined

bounding box prediction and classification in one net-
work

– YOLO9000 is an improved version of YOLO advertised
as Better, Faster, Stronger

– Alternative: Single-Shot Multi-Box Detector
– All single shot detectors evaluate many hypothesis lo-

cations, but most of them are easy negatives
– This imbalance is not addressed by current training
– By using Focal loss, we pay less attention to easy ex-

amples
Instance Segmentation

• Next step after semantic segmentation
• Main goal: detect different instances of the same class
• Number of instances initially unknown, pixel-wise prediction

as in semantic segmentation not sufficient
→ Combination of object detection and semantic segmentation

• Example: Mask R-CNN: Object detection solves instance
separation, segmentation refines bounding boxes per in-
stance

→ Step 1: Region proposal: proposes candidate object bound-
ing boxes

→ Step 2:Classification, bounding-box regression and segmen-
tation in parallel

Difference between semantic segmentation, instance seg-
mentation and object detection
Semantic segmentation aims to predict a class label to each pixel
of an image.Object detection usually predicts bounding boxes for
each objects, while instance segmentation aims to dis-criminate
different instances (samples) of the sample class by assigning a
class label as well as associating an instance identifier for each
pixel.

20

