
Künstliche Intelligenz 2 - Zusammenfassung

The agent view in AI2

Definition (Actual environment for the agent).
We are now in an environment which is only partially observable
and where the agents actions are non-deterministic. Therefore,
we have to optimize expected utility instead of actual utility.
A stateful reflex agent has a world model consisting of

� a belief state with information about possible world states.
� a transition model that updates the belief state based on

sensors and actions.

Definition (Utility-based agent).
A utility-based agent uses a world model with a utility func-
tion that influences its preferences among the states of that
world. It chooses the action that leads to the best expected
utility. This is computed by averaging over all possible outcome
states, weighted by the probability of the outcome.

Definition (Probabilistic agents).
In a partially observable world, the belief model =̂ Bayesian net-
work and the inference =̂ probabilistic inference.

Definition (Decision-Theoretic agent).
In a partially observable, stochastic world, the belief model +
transition model =̂ Decision networks and the inference =̂ MEU.
This agents is a particular kind of utility-based agent.

Probability Theory

Definition (Random variable).
A random variable is a variable quantity whose value depends
on possible outcomes of unknown variables and processes. Two
of the most considered types are finite-domain random variables
and boolean random variables.

Definition (Unconditional probability).
Given a random variable X, P (X = x) denotes the uncondi-
tional probability, that X has value x in absence of any other
information.

Definition (Probability distribution).
The probability distribution P (X) for a random variable X
is the vector of probabilities for the domain of X.

Example: Weather has the domains sunny, rain, cloudy and snow.
⇒ P (weather) = 〈0.7, 0.2, 0.08, 0.02〉

Definition (Event).
A set of outcomes X = x is called event.
Given random variables {X1, . . . , Xn}, an atomic event is an
assignment of values to all variables.

Example of atomic events:
Be A,B boolean random variables, then we have four atomic
events: a ∧ b, a ∧ ¬b, ¬a ∧ b, ¬a ∧ ¬b

Definition (Joint probability distribution).
Given a subset Z ⊆ {X1, . . . , Xn} of random variables, an event
is an assignment of values to the variables in Z. The joint prob-
ability distribution P (Z) lists the probability of all events.
The full joint probability distribution P (X1, . . . , Xn) lists
the probabilities of all atomic events.

Definition (Conditional probability).
Given propositions A,B where P (b) 6= 0, the conditional prob-
ability is defined as:

P (a | b) =
P (a ∧ b)
P (b)

Definition (Independent).
Two events a, b are independent if

P (a ∧ b) = P (a, b) = P (a) · P (b)

Note (Bayesian Rules).
1. Product rule:

P (A ∧B) = P (A | B) · P (B)

2. Chain rule:

P (X1, . . . , Xn) = P (Xn | Xn−1, . . . , X1) · ... · P (X2|X1) · P (X1)

3. Marginalization (for all possible value combinations of Y):

P (X) =
∑
y∈Y

P (X, y)

Example:

P (e) = P (e | H) · P (H) + P (e | ¬H) · P (¬H)

4. Normalization:

P (X | e) = αP (X, e) mit α · P (e) = 1

Example:

1 = α · P (e) = α · 〈0.4, 0.2〉 ⇔ 1 = α(0.4 + 0.2)⇔ α = 1/0.6

Definition (Bayes’ rule).
Given two propositions a, b, we have

P (a | b) =
P (b | a) · P (a)

P (b)

Definition (Conditional independence).
Given the random variables Z1, Z2, Z, we say that Z1 and Z2

are conditionally independent given Z if

P (Z1, Z2 | Z) = P (Z1 | Z) · P (Z2 | Z)

It also holds:
P (Z1 | Z2, Z) = P (Z1 | Z)

Further important formula:
� P (A ∨B) = P (A) + P (B)− P (A ∧B)
� P (A | B) + P (¬A | B) = 1

1

Bayesian Network

Definition (Naive Bayes model).
A Bayesian network in which a single cause directly influences a
number of effects, all conditionally independent, given the cause
is called a naive Bayes model. Here the full joint probability
distribution can be written as

P (cause | eff1, . . . , effn) = P (cause) ·
∏
i

P (effi | cause)

Definition (Bayesian network).
A Bayesian network represents the structure of a given do-
main. Probabilistic inference exploits that structure to compute
probabilities and update belief states. Algorithmic examples are
Inference by Enumeration and Variable Elimination.
For computing the probability of P (X | e) the following variable
names are used:

� query variable: X
� evidence variable: e
� hidden variable: all other variables in the network

Drawing a Network:
� Given is a variable order
� For every variable: Insert variable and define its parents

(P (Xi|X1, ..., Xi−1) = P (Xi|Parents(Xi)))
� Network is optimal, if causes are inserted before symptoms
� Example: Asia, Smoke, TBC, LC, Bron, Xray, Dysp
� Hint: Child nodes are conditionally independent given their

parents

Asia Smoke

TBC LC Bron

Xray Dysp

Causes

1. Symptoms

2. Symptoms

Calculating probability (Inference by Enumeration):
� Given: Bayesian Network!
� Evaluates the tree with depth first. Space Complexity is

linear. Time Complexity is exponential.
� Build: P (query | evidence) = P (q | e)

(query has to be ’above’ evidence, if not: Bayes Rule)
� Normalize: P (q | e) = α · P (q, e)
� Marginalize with all hidden variables:

P (q | e) = α ·
∑

a∈A,b∈B,...

...

� Insert product of all variables under their parents:

P (q | e) = α ·
∑

a∈A,b∈B,...

P (q | partentsi) ·P (a | parentsi) · ...

Definition (CPT).
Each node Xi is associated with a conditional probability
table (CPT), specifying P (Xi | Parents(Xi)).

Definition (Deterministic nodes).
A node X in a Bayesian network is called deterministic, if its
value is completely determined by the values of Parents(X)..

Definition (Noisy nodes).
Noisy node means that a node is nearly deterministic, so there
is not a high probability for other causes.

Definition (Diagnostic and Causal arcs).
In a Bayesian network there are causal and symptom nodes. A
causal edge goes from a cause to a symptom. A diagnostic edge

goes from a symptom to a cause.
The Bayes rule can be used to compute causal edges instead of
diagnostic edges.
Example:
Causal: P (Smoke | Bron)
Diagnostic: P (Bron | Smoke)

Definition (Polytree).
A directed acyclic graph is called polytree, or singly connected,
if the underlying undirected graph is a tree.

Definition (Variable elimination).
Variable elimination is a Bayesian network inference algo-
rithm that avoids repeated and irrelevant computation. In some
special cases, this can run in polynomial time (e.g. polytree)
Sketch of ideas:

1. Avoiding repeated computation: Evaluate expressions from
right to left, storing all intermediate results.

2. Avoiding irrelevant computation: Repeatedly remove hid-
den variables that are leaf nodes in the Bayesian network.

Decision Theory

Definition (Decision Theory).
Decision Theory investigates how an agent deals with choosing
among actions based on the desirability of their outcomes.
Problem: Because our environment is just partially observable,
we do not know the current state.
Idea: Rational decisions equals to choose actions that maximize
expected utility.
→ Treat result of an action a as a random variable R(a) whose

variables are the possible outcome states.
→ Preferences of the agent are captured in a utility function U .

Definition (Expected utility).
The expected utility EU(a|e) of an action a given evidence e
can be calculated as

EU(a | e) =
∑
s′

P (R(a) = s′ | a, e) · U(s′)

Definition (Preferences).
Preferences can be expressed in form of

� A � B: A is preferred over B
� A ∼ B: Indifference between A and B
� A � B: B is not preferred over A

Preferences are called rational if and only if the following con-
straints hold:

� Orderability: (A ≺ B) ∨ (B ≺ A) ∨ (A ∼ B)

� Transitivity: (A ≺ B) ∧ (B ≺ C)⇒ (A ≺ C)

� Continuity: A ≺ B ≺ C ⇒ ∃p([p,A; (1− p), C] ∼ B)

� Substitutability: (A ∼ B)⇒ ([p,A; (1− p), C] ∼ [p,B; (1− p), C])

� Monotonicity:
(A � B)⇒ [(p ≤ q)⇔ ([p,A; (1− p), B] � [q,A; (1− q), B])]

Relation to the utility functions: According to Ramsey’s the-
orem, if a given set of preferences obey the constraints above,
there is a utility function U such that

U(A) ≥ U(B)⇔ A � B and U([p1, S1, . . . , pn, Sn]) =
∑

piU(Si)

Definition (Value function).
We call a total ordering on states a value function or ordinal
utility function.
⇒ An observer can construct a value function V by observing

the agents preferences.

Definition (MEU principle).
The MEU principle is to choose the action that maximizes
expected utility.

2

Definition (Utilities).
→ Best possible prize u> with probability p.
→ Worst possible catastrophe u⊥ with probability 1− p.
→ Normalized utilities: u> = 1, u⊥ = 0.
→ Micromorts: One-millionth chance of death
⇒ Example: Driving a car for 370km incurs a risk of one

micromort.

Definition (Decision Networks).
For calculating the utility of an action. First build up a decision
network, which contains three types of nodes:

� Utility nodes: The resulting utility of a network is repre-
sented as a utility node. These are rhombuses (Rauten)

� Decision nodes: The action we can decide about. These
are rectangles

� Random nodes: all the other variables we can not influ-
ence directly. These are ellipses

Calculating the utility of the decision node:
� Construct multiple cases for the different values of the deci-

sion node (e.g. true, false)
� The utility of the decision node is equal to the sum of the

different possible utility states with their probability
� The probability of a utility state is determined with infer-

ence by enumeration: Product of all variables under their
parents (only random nodes). If those variables can be true
or false, a sum for all cases is needed.

� Special Case: decision node goes directly into utility node:
Only the utility states, that are fixed by the decision node
case have to be considered

Examples:

Forecast

Weather Umbrella

Utility

Utility of Umbrella:

U(umb) = P (w|f) · U(umb,w) + P (¬w|f) · U(umb,¬w)

U(¬umb) = P (w|f) · U(¬umb,w) + P (¬w|f) · U(¬umb,¬w)

Temporal Probability Models

Definition (Temporal probability model).
A temporal probability model is a probability model, where
possible worlds are indexed by a time structure.
→ Xt = set of unobservable state variables at time t
→ Et = set of observable evidence variables at time t

Definition (Markov Process).
A Markov process is a sequence of random variables with the
Markov property. Markov property means that Xt only de-
pends on a bounded subset of X0:t−1.
→ First-order Markov process:

P (Xt | X0:t−1) = P (Xt | Xt−1)

→ Second-order Markov process:

P (Xt | X0:t−1) = P (Xt | Xt−2, Xt−1)

Definition (Transition and Sensor Model).
Random variables in a Markov process are dividable into a set
of state variables Xt and a set of evidence variables Et. We
call P (Xt | Xt−1) the transition model and P (Et | Et−1) the

sensor model.
A Markov process is stationary if the transition model is inde-
pendent of time.
The sensor model predicts the influence of percepts on the be-
lief state. We say that a sensor model has the sensor Markov
property if and only if P (Et | X0:t, E0:t−1) = P (Et | Xt).
Assumption here: Sensor Markov property and stationary
⇒ P (Et | Xt) fixed for all t

Definition (Computation with full joint probability).
If we know the initial prior probabilities at t = 0, then we can
compute the full joint probability distribution as

P (X0:t, E0:t) = P (X0) ·
t∏
i=1

P (Xi | Xi−1)P (Ei | Xi)

Definition (Filtering).
In filtering, we compute the belief state which is input to the
decision process of a rational agent, in formula P (Xt | e1:t).
Computing of filtering from t to t+1:

1. Calculate transition without evidence (forward recursion):

P (Xt+1) =
∑
xt

P (Xt+1 | xt) · P (xt)

→ The first probability can directly be taken from the
transition model!

2. Update with evidence of day t+1:

P (Xt+1 | Et+1) = α · P (Et+1 | Xt+1) · P (Xt+1)

Definition (Prediction).
For prediction, we evaluate the possible action sequences, in
formula P (Xt+k | e1:t), k > 0.
This is equivalent to filtering without evidence.
For calculation take just step 1 of filtering and forget the evidence
update.

Definition (Smoothing).
With the help of smoothing, we can better estimate the past
states, which is essential for learning. In formula P (Xk |
e1:t), 0 ≤ k < t.
Computing smoothing from k+1 to k:

1. Compute backwards recursion:

P (ek+1:t | Xk) =
∑
xk+1

P (ek+1 | xk+1)·P (ek+2:t | xk+1)·P (xk+1 | Xk)

→ First and last probability can directly obtained from the
model, the second has to be calculated before!

2. Smoothing in k:

P (Xk | e1:t) = α · P (Xk | e1:k) · P (ek+1:t | Xk)

→ First probability is the result of the filtering in k!

Definition (Most likely explanation).
Most likely explanation is an important task for speech
recognition or decoding with a noisy channel, in formula
argmax(P (x1:t | e1:t)).

Definition (Hidden Markov Models).
A hidden Markov model is a temporal probabilistic model in
which the state of the process is described by a single discrete
random variable Xt with domain {1, . . . , S}.
Then the transition model can be translated to a transition
matrix with dimension S×S. The rows of the transition matrix
sum up to 1.
The sensor matrix for each time step is a diagonal matrix. There
are as many sensor matrices, as there are states for the evidence
node. The sum of each row over all matrices sum up to 1.
HMM-Algorithms:

3

� Filtering: f1:t+1 = α (Ot+1 T
transp f1:t)

� Prediction: p1:t+k = α TT
k

f1:t
� Backwards: bk+1:t = T Ok+1 bk+2:t with bt:t = (1, 1, ...)T

� Smoothing: resultk = α(f1:k ◦ bk+1:t)

X0 X1 X2 X3

E1 E2 E3

(
x
y

) R1

R2

R3

R4

(
1
1

)
R5

αR4 ◦ R5

TT

αO
TT

αO

T ·O

Example:
Aim: Determine whether it rains given the evidence of seeing
your boss with an umbrella.
When it rains, it also rains with a probability of 70 % the next
day. If it does not rain, it stays this way with 60 %. Your
boss takes an umbrella on 60 % of rainy days and with 30 % on
non-rainy days.

rain1 rain2 rain3

umb2 umb3

> ⊥
>
⊥

[
0.7 0.3
0.4 0.6

]

[
0.6

0.3

] [
0.4

0.7

]
T

OT OF

Definition (Dynamic Bayesian Networks).
A Bayesian network is called dynamic, if and only if its random
variables are indexed by a time structure.
Assumptions: time sliced and first-order Markov process
⇒ Every HMM is single-variable DBN
→ For inference, unroll the network and do rollup filtering:

add slice t+1, sum out slice t using variable elimination.

Complex Decisions

Definition (Sequential decision problems).
In sequential decision problems, the agents utility depends
on a sequence of decisions which integrates utilities, uncertainty
and sensing.
We are in a fully observable, stochastic environment with a
Markovian transition model and an additive reward function,
calling it Markov decision process. It consists of

� A set of states s ∈ S with initial state s0 ∈ S
� A set of actions a ∈ A(s) for each state s
� A transition model P (s′ | s, a)=̂ prob. of a in s leads to s’
� A reward function R : S → R with reward R(s).

Aim is to find an optimal policy π(s), i.e the best possible action
for every possible state s.

Definition (Utility of state sequences).
We need to understand preferences between sequence of states.
For stationary preferences 1, there are only two ways to combine
rewards over time:

� additive rewards: U([s0, s1, . . . , sn]) =
∑n
i=0R(si)

� discounted rewards: U([s0, s1, . . . , sn]) =
∑n
i=0 γ

iR(si)

1[r, r0, r1, . . .] > [r, r′0, r
′
1, . . .]⇔ [r0, r1, . . .] > [r′0, r

′
1, . . .]

Definition (Utility of states).
Utility of states is equivalent to the expected discounted sum
of rewards assuming optimal actions.
The expected utility obtained by executing π starting in s is
given by

Uπ(s) = E

[∞∑
t=0

γtR(st)

]
with π∗s = argmax(Uπ(s)) independent from s. (optimal policy)
The utility U(s) of a state s is Uπ

∗
(s)

Definition (The Bellman equation).
Definition of the utility od states leads to a simple relationship
among utilities of neighboring states:

U(s) = R(s) + γ max
a∈A(s)

∑
s′

U(s′) · P (s′ | s, a)

� γ: discount factor between 0 and 1, that tells how impor-
tant future rewards are (0 = no importance, 1 = max im-
portance)

� R(s): reward of the actual state
� Rest: MEU-Principle of expected utility

Definition (Value iteration algorithm).
Idea: Use a simple iteration scheme to find a fixpoint:

1. Start with random utility values
2. Update them to make them locally consistent with Bellman

equation
3. If it is locally consistent everywhere, it is global optimal

Algorithm 1 Value Iteration

Input: States, Actions, Transition model, rewards, discount γ,
max error ε

1: repeat
2: U = U ′; δ = 0
3: for each state s ∈ S do
4: U ′(s) = R(s) + γmaxa

∑
s′ U(s′) · P (s′ | s, a)

5: if |U ′(s)− U(s)| > δ then δ = |U ′(s)− U(s)|
6: until δ < ε(1− γ)/γ

Definition (Policy Iteration algorithm).
Idea is to search for optimal policy and utility values simultane-
ously:

� Policy evaluation: given a policy πi, calculate Uπi for every
state, if πi is executed

� Policy improvement: calculate a new MEU policy πi+1 using
a 1-lookahead based on Uπi

⇒ Terminates, if policy change yields no further improvement
for utilities.

Algorithm 2 Policy Iteration

Input: mdp = States, Actions, Transition model

1: Initialize U with zero for each state and choose policy π ran-
domly

2: repeat
3: U = Policy − evaluation(π, U,mdp)
4: unchanged = true
5: for each state s ∈ S do
6: if maxa(

∑
s′ P (s′|s, a)U(s′)) >

∑
s′ P (s′|s, π[s′])U(s′) then

7: π[s] = argmax
∑
s′ P (s′ | s, a)U(s′)

8: unchanged = false

9: until unchanged
10: return π

Implementation of Policy-evaluation: Using Bellman equation,
but without max. Instead of a, we use policy πi[s]
→ Often converges in a few iterations, but each is expensive.
→ Policy iteration has the advantage, that in the Bellman

4

equation, the action is fixed by the policy. For example, in
the ith iteration with policy πi, we just have to calculate the
action πi[s] in state s.

Definition (Partially observable MDP).
A partially observable MDP is a MDP together with an ob-
servation model O that is stationary and has the sensor Markov
property: O(s, e) = P (e|s).
The optimal policy in this context is a function π(b), where b is
the belief state.
Update of the belief state:

b′(s′) = αP (e|s′)
∑
s

P (s′|s, a) · b(s)

Observe: Not just physical states can change the belief states,
also actions.
⇒ Filtering updates the belief state for new evidence.
→ Introducing belief states representing the probability

distribution over the physical state space, we can reduce
partially observable MDPs to normal MDPs.

⇒ Equivalent to MDP on belief state!

Definition (Dynamic decision networks).
Given transition and sensor models represented as a dynamic
Bayesian network, action nodes and utility nodes have to be
added to create a dynamic decision network.
A filtering algorithm is used to incorporate each new percept and
action and to update the belief state representation. Decisions
are made by projecting forward possible action sequences and
choosing the best one.

Machine Learning

Definition (Inductive learning).
The inductive learning problem P = 〈H, f〉 consists in find-
ing a hypothesis h ∈ H and a target function f of examples. An
example is a pair (x, y) of an input sample x and an outcome y.
A set S of examples is consistent, if S is a function.
A hypothesis is consistent with target f , if it agrees with it on
all examples (e.g. Curve fitting).
→ Whether we can find a consistent hypothesis depends on the

chosen space
⇒ To large space leads to high computational complexity
→ Simplest form: learn a function from examples
→ Highly simplified model of real learning (no knowledge,

examples given . . .)

Definition (Learning decision trees).
In attribute-based representations, examples are described
by attributes, their values, and outcomes. A decision tree for
a given attribute-based representation is a tree, where non-leaf
nodes are attributes, their arcs are corresponding attribute values
and the leaf nodes are labeled by the outcomes.
→ It is preferable to find more compact decision trees.
⇒ Idea: Choose most significant attribute as root of the subtree.

Algorithm 3 Decision tree learning DTL

Input: examples, attributes, default, target

1: if no example left then return default
2: else if all examples have same target-value then
3: return target-value
4: else if no attributes left then
5: return most-frequent-target-value(example)
6: else
7: best = Attribute with highest information gain
8: tree = new subtree with root best
9: m = most-frequent-target-value(example)

10: for all values vi of best do
11: examplesi = examples with best=vi
12: subtree = DTL(examplesi, attributes \ best,m)
13: add branch to tree with arc label vi and subtree

14: return tree

Definition (Information Gain).
Entropy:

I(〈P1, . . . , Pn〉) =

n∑
i=1

−Pi log2(Pi)

Entropy is a measurement for the information of a block of data.
Important values: I(〈1, 0〉) = 0bit, I(〈1/2, 1/2〉) = 1bit
Information Gain of an attribute:

Gain(A) = I(〈 p

p+ n
,

n

p+ n
〉)︸ ︷︷ ︸

Entropy of actual root

−
n∑

i=1

pi + ni

p+ n
I(〈 pi

pi + ni
,

ni

pi + ni
〉)︸ ︷︷ ︸

Expected number of bits
per example over all branches

Example: Decision tree of renting an apartment

Rooms Kitchen Acceptable
3 yes yes
3 no no
4 no yes
3 no no
4 no yes

Rooms and Kitchen are attributes, Acceptable is the target. The
entries of the columns are values. A row is called an example.
Entropy for the whole set regarding the target:

I(〈3
5
,

2

5
〉) = −3

5
· log2(

3

5
)− 2

5
log2(

2

5
) ≈ 0.97bit

Information gain for rooms is bigger than kitchen:

Gain(Rooms) = I(〈3
5
,

2

5
〉)︸ ︷︷ ︸

Entropy root

− 2

5
I(〈1, 0〉)︸ ︷︷ ︸
Rooms=4

− 3

5
I(〈1

3
,

2

3
〉)︸ ︷︷ ︸

Rooms=3

= 0.42bit

Information gain for the case rooms = 3, kitchen:

Gain(Kitchen) = I(〈1
3
,

2

3
〉)− 1

3
I(〈1, 0〉)− 2

3
I(〈0, 1〉) = 0.92bit

Information gain for the case room = 4 is not computed, because
all goalvalues are yes.

Rooms

Kitchen Yes

Yes No

3 4

Y
es

N
o

Definition (Decision tree pruning).
For decision tree pruning repeat the following on a learned
decision tree:

� Find terminal test node (only ancestor of leaves)

5

� If information gain was low, prune it by replacing it by a
leaf node

A result has statistical significance, if the probability they
could arise from the null hypothesis is very low (usually 5%).
⇒ For decision tree pruning, the null hypothesis is that the

attribute is irrelevant

Definition (PAC learning).
Basic idea of Computational Learning Theory:

� Any hypothesis h that is seriously wrong, will almost cer-
tainly be revealed after a small number of examples, because
it will make an incorrect prediction

� Thus, if h is consistent with a sufficiently large set of training
examples is unlikely to be seriously wrong.
⇒ h is probably approximately correct

Any learning algorithm that returns hypotheses that are proba-
bly approximately correct is called a PAC learning algorithm.
→ Problem: PAC learning for Boolean functions needs to see

(nearly) all examples.
⇒ Ways out: prior knowledge, simple hypothesis (e.g decision

tree pruning) or focus on learnable subsets.

Definition (Decision lists).
Idea: Apply PAC learning to a ’learnable hypothesis space’.
A decision list consists of a sequence of tests, each of which is
a conjunction of literals. The set of decision lists where tests are
a conjunction of at most k literals is called k-DL.
→ Test succeed: Stop with return value
→ Test fails: Continue with next test in list
Decision list learning algorithm scheme
Greedy algorithm that repeats the following steps:

1. find test that agrees exactly with some subset E of the target
2. add it to the decision list under construction and remove E
3. construct the remainder of the DL using just the remaining

examples
Example:

A1(x, 1)

1

A2(x, 1) ∧A3(x, 1)

0

A2(x, 0) ∧A4(x, 0)

0

1

Y
es

No

Y
es

No

Y
es

No

⇒ Like decision trees, but restricted branching and more
complex tests.

Definition (Gradient Descent Method).
The gradient descent algorithm for finding a minimum of a
continuous function f is hill-climbing in the direction of the steep-
est descent, which can be computed by partial derivatives of f.
→ Used for continuous target functions f!
Explanation of the algorithm:
It inputs a differentiable function and initial weights. Until w
converges, it takes steps into the direction of the greatest de-
scend, restricted by a parameter α, which is also called learning
rate.

Definition (Linearly separable).
A linear decision boundary is called a linear separator and data
that admits one are called linearly separable. A decision
boundary is a line that separates two classes of points.

Definition (Logistic regression).
The process of weight-fitting in hw(x) = 1

1+e−wx called logistic
regression.
→ Learning via uncontinuous functions is often unpredictable
⇒ Approximate with a differentiable function

Definition (Over- and underfitting).
We speak of overfitting, if a hypothesis h describes random
error rather than the underlying relationship. Underfitting oc-
curs when h cannot capture the underlying trend of the data.

⇒ Overfitting increases with the size of hypothesis space and
the number of attributes, but decreases with number of
examples.

→ Disadvantage of overfitting: Has to learned to much by the
examples, it is harder to have general learning.
→ Use overfitting to generalize decision trees → prune nodes

Neuronal Networks

Definition (Neuronal networks).
The AI sub-field of neural networks studies computing systems
inspired by the biological neural networks that constitute brains.
An artificial neural network is a directed graph of units and
links. A link from unit i to unit j propagates the activation ai
from unit i to unit j, it has a weight wi, j associated with it.
A McCulloch-Pitts unit first computes a weighted sum of all
inputs and then applies an activation function g to it. If g is a
threshold function, we call the unit a perceptron unit, if g is a
logistic function a sigmoid perceptron unit.

Definition (Feed-forward networks).
A neural network is called a feed-forward network, if it is
acyclic. Feed-forward networks are usually organized in layers,
where edges only connect nodes from subsequent layer. The first
layer is called input layer, the last output layer and every
other layer is called hidden layer.
→ Opposite are recurrent networks, which have directed cycles.

Definition (Perceptrons).
A perceptron network is a feed-forward network of perceptron
units. A single-layer perceptron network is called a perceptron.
→ All input units are directly connected to output units
→ Output units all operate separately, no shared weights

Definition (Perceptron learning).
Idea: Learn by adjusting weights in w to reduce generalization

loss on training set.
→ Compute with the squared error loss of a weight vector w for

an example (x,y)
→ Perform optimization search by gradient descent for any

weight wi
→ Use a simple weight update rule
⇒ Perceptron learning rule converges to a consistent function for

any linearly separable data set

Example of a 2-layer feed-forward network: XOR-network

Input Layer

X1

X2

Hidden Layer

H1

H2

Output Layer

Out

w1,1

w
1,2

w2,1

w2,2

w
1 , out

w2, o
ut

→ A perceptron with g = step function can express AND, OR,
NOT, but not XOR

⇒ Input space is linearly separable for the perceptrons!

Definition (Multilayer perceptrons an learning).
A Perceptron with at least one additional hidden layer is called
multilayer perceptron.
Idea for learning: Learn by adjusting weights to reduce error on

training set.
Problem: Neuronal networks have multiple outputs, but we can

compute the squared error loss of a weight matrix for
an example (x,y)

⇒ Output layer is analogous to that for single-layer perceptron,

6

but multiple output units
Problem: For the hidden layers examples do not say anything

about them!
Idea: back-propagate the error from the output layer!

Definition (Back-propagation process).
The back-propagation process can be summarized as follows:

1. Compute the ∆ values for the output units, using the ob-
served error

2. Starting with output layer, repeat the following for each
layer in the network, until the earliest hidden layer is
reached:
(a) Propagate the ∆ values back to the previous (hidden)

layer
(b) Update the weights between the two layers

⇒ Kind of gradient descent procedure
→ Applications: speech, driving, handwriting

7

