
Künstliche Intelligenz I - Zusammenfassung
Autoren: Linda Schneider und Julian Kotzur

What is AI?

Definition (AI).
• AI is a subfield of Computer Science that’s concerned with

the automation of intelligent behavior.
• AI studies how we can make the computer do things that

humans can still do better at the moment.

Definition (Components of AI).
• Ability to learn
• Making conclusions
• Perception
• Language understanding
• Emotions

Definition (Narrow AI).
Use of a software to study or accomplish a specific problem sol-
ving or reasoning tasks.

Definition (Strong AI).
Software that performs full range of human cognitive abilities.
⇒ Doesn’t exist yet!
→ Problems requiring strong AI are called AI complete.

Rational Agents

Definition (What is AI here?).
• Systems that think like humans.
→ Approximated by Neural networks.

• Systems that act like humans.
→ Turing Test (Can systems fool a human?)
→ Problem: Turing test is not reproducible, constructive,

or amenable to mathematical analysis.
• Systems that think rationally.
→ Logics, Formalization of knowledge and inference.
→ Problem: Not all intelligent behavior is mediated by

logical deliberation.
• Systems that act rationally.
→ The question how to make good action choices.
⇒ Rational behavior consists of always doing what is

expected to maximize goal achievement given the
available information.

Definition (Agent and rationality).
An agent is anything that perceives its environment via sensors
and acts on it with actuators. Here we designing agents that
exhibit rational behavior.
→ For given class of environments and tasks, we seek the agent

with the best performance.
→ Computational limits make perfect rationality unachievable.
⇒ Design best program for given machine resources.

Definition (Modeling Agents).
• An agent is an entity that perceives and acts.
• A percept is the perceptual input of an agent at a specific

instant.
• Any recognizable, coherent employment of the actuators of

an agent is called an action.
• The agent function of an agent a maps from percept his-

tories to actions: fa : P∗� A
• An agent function can be implemented by an agent pro-

gram that runs on a physical agent architecture.
⇒ Problem: Agent function can become very big.

Definition (Rational Agent).
An agent is called rational, if it chooses whichever action ma-
ximizes the expected value of the performance measure given the
percept sequence to date.

Consequences of rationality

Definition (Performance measure).
A performance measure is a function that evaluates a se-
quence of environments.

Note. Rational don’t need to be perfect. Agent only needs to
maximize expected value.Percepts may not supply all infos.
⇒ Rationality is exploration, learning and autonomy.

Definition (Autonomous).
An agent is called autonomous, if it does not rely on the prior
knowledge of the designer.
⇒ Autonomy avoids fixed behaviors that can become un-

successful in a changing environment.

Definition (PEAS for describing task environment).
Specify the task environment in terms of

• Performance measure: how should he behave?
• Environment: where is our agent?
• Actuators: what can he do, move or change?
• Sensors: how can he perceive?

Classifying Environments

Definition (Environment properties).
• Fully observable, if sensors give access to complete state

of environment at any time, else partially observable.
• Deterministic, if the next step is completely determined

by current state and the agents action, else stochastic.
• Episodic, if experience is divided into atomic episodes with

perceiving and then performing a single action. It is also
important that the next action does not depend on previous
ones. Otherwise we call it sequential.

• Dynamic, if the environment can change without an ac-
tion of the agent, else static. If the environment does not
change but the performance measure og the agent it is called
semidynamic.

• Discrete, if the environment and agent states are countable,
else continuous.

• Single-agent, if just one agent acts in the environment, else
multi-agent.

Representing the environment in agents

Note. Questions of an agent could be like
• What is the world like now?
• What action should I do?
• What do my actions do?

Definition (State representations).
We call a state representation

• Atomic, if it has no internal structure. (Black Box)

• Factored, if state is characterized by attributes, values.

• Structured, if the state includes objects and relations.

1

Types of Agents

Definition (Simple reflex agents).
A simple reflex agent is an agent a that only bases its actions
on the last percept.

→ Problem: Can only react to the perceived state of the
environment, not to changes.

Definition (Reflex agents with state).
A stateful reflex agent is an agent whose agent function de-
pends on a model of the world.

→ Problem: Having a model of the world does not always deter-
mine what to do.

Definition (Goal-based agent).
A goal-based agent is a stateful reflex agent that deliberates
actions based on goals and a world model.

→ Observation: More flexible in the knowledge it can utilize.

Definition (Utility-based agent).
A utility-based agent uses a world model with a utility functi-
on that influences its preferences among the states of that world.
It chooses the action that leads to the best expected utility.

→ Allows rational decisions where goals are inadequate.

Definition (Learning Agent).
A learning agent is an agent that augments the performance
element, which determines actions from percept sequences with
a learning element, a critic and a problem generator.

Problem solving and search

Problem Solving

Definition (Describing Problems).
We want to describe problems in a standardized way, so we may
find a general algorithm. We will use the following two con-
cepts:

• States: A set of possible situations in our problem domain
• Actions: Get us from one state to another

Sequences of actions, which brings us to a situation, where the
problem is solved, is a solution.

Definition (Offline problem solving).
In offline problem solving an agent computing an action se-
quence based complete knowledge of the environment.
→ Remark: Offline problem solving only works in fully

observable, deterministic, static, and episodic environments.
→ We restrict ourselves to offline problem solving.

Definition (Problem formulation).
A problem formulation models the situation (states and acti-
on) at an appropriate level of abstraction. So it describes the in-
itial state and also limits the objectives by specifying goal states.

Definition (Mathematical description of a Search Problem).

• A search problem P = (S,A, T, I,G) consists of a set
S of states, a set A of actions and a transition model
T : A × S → P (S) that assigns to a ∈ A, s ∈ S a set of
successor states.
Some states in S are goal states G and initial states I.

• A solution for a search problem consists of a sequence of
actions a1, . . . an, such that action ai can be done in si−1,
s0 ∈ I and in the end we reach sn ∈ G.

• Often we add a cost function e, that associates a step cost
e(a) to an action. The cost of a solution is the sum of the
step costs.

• The predicate that tests for goal states is called a goal test.

→ The definition for problem formulation we made is called
blackbox description.

⇒ Gives the algorithm no information about the problem.

Definition (Whitebox description).
A declarative description (also called whitebox descripti-
on)describes the problem itself.

→ Problem description language
→ Declarative descriptions are strictly more powerful than

blackbox descriptions: they induce blackbox descriptions,
but also allow to analyse/ simplify the problem.

Problem types

Types:

• Single-state problem: observable, deterministic, static,
discrete.

• Multiple-state problem: initial state not or just partially
observable, deterministic, static, discrete.

• Contingency problem: non-deterministic, unknown state
space (like a baby).

→ Often we need to select a state space, because the real world
is absurdly complex.

Definition (Single-state problem formulation).

• Initial state
• Successor function S
• Goal test
• Optional: Path cost

2

Search

Definition (Tree Search Algorithms).
We observe, that the state space of a search problem P =
(S,A, T, I,G) forms a graph (S, TA). The tree search algorithm
consists of the simulated exploration of state space (S,A) in
a search tree formed by successively generating successors of
already-explored states.
We define the path cost of a node n in a search tree T to be the
sum of the step costs on the path from n to the root of T. The
cost of a solution is defined analogously.

→ It is helpful to implement a fridge.
→ The fringe is a list nodes not yet considered. It is ordered by

the search strategy.

Definition (Search strategies).
A search strategy is a function that picks a node from the
fringe of a search tree.
→ Equivalently: orders the fringe and picks the first

→ Important properties of strategies: completeness, time
complexity, space complexity and optimality.

Time and space complexity measured in terms of:

b maximum branching factor of the search tree
d minimal depth of a solution in the search tree
m maximum depth of the search tree (may be ∞)

Uniformed search strategies

Definition (Uniformed search).
Use only the information available in the problem definition.

Abb. 1: Example tree for the uniform searches

Definition (Breadth-first search).
Expand shallowest unexpanded node. So, the fringe is a FIFO
queue, i.e. successors go in at the end of the queue.
Properties:

• Its complete, if b is finite.
• Time and space: O(bd)
• Optimal, just if cost = 1 per step.
• Disadvantage: Space!
• One can always get an optimal solution, when all solutions

are created an then the optimal one is picked. This works
only, if m is finite.

→ Visiting order: A-B-C-D-E-F-G-H-I-J-K-L-M-N-O

Definition (Uniform-cost search).
Expand least-cost unexpanded node. So, the fringe is ordered by
increasing path cost. It’s equivalent to breadth-first search if
all step costs are equal.
Properties:

• Its complete, if step costs greater than zero.
• Time and space: number of nodes with path-cost less than

that of optimal solution.
• Optimal: Yes!

→ Visiting order: A-B-C-D-E-F-G-H-I-J-K-L-M-N-O

Definition (Depth-first search).
Expand deepest unexpanded node. So, the fringe is organized as
a LIFO queue (a stack), i.e. successors go in at front.
Note: It can perform infinite cyclic excursions.
⇒ Finite, non-cyclic search space (or repeated-state

checking)
Properties:

• Its complete, if state space is finite and does not contain
infinite paths or loops.

• Time: O(bm)
• Space: O(b ·m)
• Optimal: No
• Disadvantage: Time terrible if m much larger than d.
• Advantage: Time may be much less than breadth-first search

if solutions are dense.
→ Visiting order: A-B-D-H-I-E-J-K-C-F-L-M-G-N-O

Definition (Iterative deepening search).
Iterative deepening search is depth-limited search with ever
increasing limits, where depth-limited search is depth-first
search with a depth limit.
Properties:

• It’s complete!
• Time: O(bd+1)
• Space: O(b · d)
• Optimal: Yes, if step cost are 1.

Tree Search vs. Graph Search
→ Nobody uses Tree search in practice, because states

duplicated in nodes are a huge problem for efficiency and it
is quite memory-intensive.

→ A graph search algorithm is a variant of a tree search
algorithm that prunes nodes whose state has already been
considered, essentially using a DAG data structure.

Informed Search Strategies

Definition (Best-first search).
Basic Idea: Use an evaluation function for each node. Expand
most desirable unexpanded node. The fringe is a queue sorted in
decreasing order of desirability.
Special cases are Greedy search and A∗-search.

→ This is like UCS, but with evaluation function related to
problem at hand replacing the path cost function.

Definition (Greedy search).
Greedy search is a heuristic, which expands the node that ap-
pears to be closest to the goal. In greedy search we replace the
objective cost to construct the current solution with a heuristic
or subjective measure from which we think it gives a good idea
how far we are from a solution.
So instead of measuring the cost to build the current partial so-
lution, we estimate how far we are from the desired goal.
Properties:

• No, it can get stuck in loops.
• Time and Space: O(bm)
• Optimal: No, it’s a heuristic!

→ Worst-case time same as depth-first search.
→ Worst-case space same as breadth-first.

Two properties of Heuristic functions:
1. h is admissible if it is a lower bound on goal distance.
2. h is consistent if, when applying an action a, the heuristic

value cannot decrease by more than the cost of a.
⇒ Consistency is a sufficient condition for admissibility.

3. If h2 dominates h1, then h2 is better for search than h1.
→ For good heuristics,try the relaxed version of the problem.
→ h = 0: no overhead at all, completely un-informative

3

→ h = h∗: perfectly accurate, overhead, olving the problem in
the first place.

Definition (A∗-search).
Basic idea: Avoid expanding paths that are already expensive.
The simplest way to combine heuristic and path cost is to
simply add them. Thus the evaluation function f(n) is the esti-
mated total cost of path through n to goal.
→ A∗-search with admissible heuristic is optimal.
→ In A∗, node values always increase monotonically.
Properties:

• Complete: Yes, unless there are infinitely many nodes n with
f(n) ≤ f(0)

• Time and Space: Exponential in (relative error in h × length
of solution)

• Optimal: Yes.
→ The run-time depends on how good we approximated the

real cost h∗ with h.

Local Search

Definition (Systematic Search).
We call a search algorithm systematic, if it considers all states
at some point. Systematic search procedures are complete. There
is no limit of the number of search nodes that are kept in memory
at any time systematic search procedures. For example, all tree
search algorithms are systematic.

Definition (Local Search Problems).
Basic Idea: Sometimes the path to the solution is irrelevant.
A local search algorithm is a search algorithm that operates
on a single state, the current state. Advantage is the constant
space.
Popular example (n-queens problem): Put n queens on n×n
board such that no two queens in the same row, columns, or
diagonal.

Definition (Hill-climbing).
Start anywhere and go in the direction of the steepest ascent.
Doing this more than once leads to a good heuristic.
Works, if solutions are dense and local maxima can be escaped.
⇒ Depth-first search with heuristic.

Definition (Simulated annealing).
Escape local maxima by allowing some bad moves, but gra-
dually decrease their size and frequency. If it decreases slowly
enough, we will always reach the best state.

Definition (Local beam search).
Keep k states instead of 1 and choose top k of all their succes-
sors. Choose k successors randomly, biased towards good ones,
so maybe not all k states end up on the same local hill.

Definition (Genetic algorithms).
Basic idea: Use local beam search, randomly modify popula-
tion an generate successors from pairs of states. Optimize fitness
function.
Problem: Genetic Algorithms require states encoded as strings.

Adversarial search for game playing

→ Adversarial search = Game playing against an opponent.
Restrictions for game playing:

• Game states discrete, number of game states finite.
• Finite number of possible moves.
• The game state is fully observable.
• The outcome of each move is deterministic.
• Just two players (call them Max and Min).

• Turn-taking: Alternatingly (Max begins).
• There are no infinite runs of the game.
• Terminal game states have a utility u. Max tries to maximize

u, Min tries to minimize u.

Definition (Strategy and optimality).
Let Θ be a game state space. A strategy for X is a function, so
that a is applicable to s.A strategy is optimal if it yields the best
possible utility for X assuming perfect opponent play.
→ In almost all games, computing a strategy is infeasible.

Three possibilities to describe a game state space:

1. Explicit: Sometimes used by humans, but nor good for com-
puters.

2. Blackbox/API: Used by both. Assumed description in
• Method of choice for all those game players out there

in the market.
• Programs designed for, and specialized to, a particular

game..
• Human knowledge is key!

3. Declarative: General Game playing, based on logic. Active
area of research in AI.

Minimax Search

→ We want to compute an optimal strategy for Max.

Definition (Minimax).
We alternating between max and min, using the following ru-
les:

1. Depth-first search in game tree, with Max in the root.
2. Apply utility function to terminal positions.
3. Bottom-up for each inner node n in the tree, compute the

utility u(n) of n as follows:
• If it’s Max’s turn: Set u(n) to the maximum of the

utilities of n’s successor nodes.
• If it’s Min’s turn: Set u(n) to the minimum of the uti-

lities of n’s successor nodes.
4. Selecting a move for Max at the root: Choose one move that

leads to a successor node with maximal utility.

Minimax advantages:

• Minimax is the simplest possible (reasonable) game search
algorithm.

• Returns an optimal action, assuming perfect opponent play.
• There’s no need to re-run Minimax for every game state.

Minimax disadvantages:

• It’s completely infeasible in practice.
• When the search tree is too large, we need to limit the search

depth and apply an evaluation function to the cut-off states.

Evaluation functions

Definition (Evaluation function).
An evaluation function f maps game states to numbers:

• f(s) is an estimate of the actual value of s (as would be
computed by unlimited-depth Minimax for s).

• If cut-off state is terminal: Just use u instead of f.

4

Definition (Linear evaluation function).
A common approach is to use a weighted linear function for f:

w1f1 + w2f2 + · · ·+ wnfn

where the wi are the weights, and the fi are the features.
Weights wi can be learned automatically, but the features have
to be designed by humans.

Definition (The horizon problem).
Critical aspects of the game can be cut-off by the horizon.
The solution how deeply to search is to use iterative deepening.
There we search with a depth limit and try to search more deeply
in good positions.

Alpha-Beta Search

Definition (Alpha Pruning).
Basic idea: Save some work by doing minimax with stop-
ping if we know that some part is worse than our best one!

Max ∞,3

Min ∞,3 Min ∞,2, � Min

3 12 8 2

Definition (Alpha-Beta Pruning).
Basic idea: Use Alpha Pruning and give an interval. For Max,
its an interval from the lowest he could reach to ∞. For Min,
the interval goes from Max above to the minimum he could reach.

Max 3, [3,∞]

Min 3, [−∞,3] Min 2,[3,2], � Min

3 12 8 2

→ Choosing the best moves first yields most pruning in
alpha-beta search.

Monte-Carlo Tree Search

Definition (Monte Carlo).
For Monte-Carlo sampling we evaluate actions through samp-
ling. For Monte-Carlo tree search we maintain a search tree
T. Pro in contrast to alpha-beta search is runtime and memory,
contra is the guardiance needed.
⇒ Samples game branches, and averages the findings.

Constraint satisfaction problems

Definition (CSP).
A constraint satisfaction problem (CSP) is a search problem,
where the states are given by a finite set V = {X1, . . . , Xn} of
variables and domains {Dv | v ∈ V } and the goal test is a set of
constraints.
Example (Map Coloring): Variables are states, domains are colors
and constraints are that neighbors must be colored differently.

→ CSP is NP-complete.

The Waltz Algorithm

Motivation: Interpret line drawings of solid polyhedra.
Problem: Are intersections convex or concave?
Main idea: Neighbored intersections impose constraints in each
other. So use CSP to find a unique set of labelings.

Formal definition of CSP

Various types of CSPs:
• n discrete variables:

– finite domains, eg. Boolean CSPs
– infinite domains, eg. job scheduling, here a linear cons-

traint language is wanted
• Continuous variables:

– Linear constraints solvable in poly time, but no optimal
algorithms for nonlinear constraint systems.

– Eg. start and end times for Hubble Telescope observa-
tions

Types of constraints:
• Unary constraints involve a single variable.
• Binary constraints involve pairs of variables.
• Higher-order constraints involve 3 or more variables.
• Preferences often represented by a cost for each variable

assigned.

Definition (Constraint Graph).
We need a binary CSP for a constraint graph. A binary CSP
is a CSP where each constraint relates at most two variables.
A constraint network forms a graph whose nodes are variables,
and whose edges represent the constraints.
Example (Map coloring):

Definition (Constraint network).
A constraint network is a triple (V,D,C), where

• V is a finite set of variables.
• D the set of their domains.
• C is a binary constraint.

Unary constraints can be expressed by restricting the domain and
higher-order constraints can be transformed into equisatisfiable
binary constraints using auxiliary variables.
⇒ Any CSP can be represented by a constraint network.

Short definitions:
• A partial assignment a maps some variables to values, a

total assignment does so for all variables.
• a is consistent if it complies with all constraints.
• A consistent total assignment is a solution.

CSP as search

Definition (Standard search formulation).
States are defined by the values assigned so far. Every solution
appears at depth n with n variables! This works for all CSPs.
BUT: There would be dn leaves.

Definition (Backtracking search).
Depth-first search for CSPs with single-variable assignments is
called backtracking search.
Variable assignments are commutative, so you only need to con-
sider assignments to a single variable at each node.
⇒ b = d, so there are dn leaves!

5

Improving backtracking efficiency

Definition (Minimum Remaining Values Heuristic).
The Minimum remaining values (MRV) heuristic for back-
tracking search always chooses the variable with the fewest legal
values, i.e. such that #({d ∈ Dv | a ∪ {v� d} is consistent}) is
minimal.
→ So we choose the most restricted variable first to reduce the

branching factor.
→ Extreme Case: #({d ∈ Dv | a ∪ {v� d} is consistent}) = 1,

then the value to take is forced.

Definition (Degree heuristic).
The degree heuristic in backtracking search always chooses
the variable with the most constraints on remaining variables.
By choosing a most constraining variable first, we detect incon-
sistencies earlier on and thus reduce the size of our search tree.
→ Commonly used strategy combination: From the set of most

constrained variables, pick a most constraining variable.

Definition (Last Constraining Value Heuristic).
Given a variable, the least constraining value heuristic choo-
ses the least constraining value: the one that rules out the fewest
values in the remaining variables.
By choosing the least constraining value first, we increase the
chances to not rule out the solutions below the current node.

Constraint Propagation

Inference

Definition (Equivalent constraint network).
Two constraint networks are equivalent, if the have the same
set of variables and the same solutions.

Definition (Tightness).
Let γ, γ′ be two constraint networks sharing the same set of va-
riables. We say that γ′ is tighter that γ, if γ′ has the same
constraints as γ plus some.

Definition (Inference).
Inference consists in deducing additional constraints (unary or
binary), that follow from the already known constraints, i.e. that
are satisfied in all solutions.
So, if two networks are equivalent and tight, we have infe-
rence. Then the tighter network has fewer consistent partial as-
signments, so it is better for the underlying problem.

Use of Inference:

• Inference as pre-process: Just once before search starts.
Then it has little runtime overhead and pruning power.

• Inference during search: At every recursive call of back-
tracking. Then it has strong pruning power, but may have
larger runtime overhead.

Search vs. Inference:
The more complex the inference, the smaller the number of search
nodes, but the larger the runtime needed at each node.

Forward Checking

→ One method for inference.
→ Cheap and useful.
→ Forward checking removes values conflicting with an

assignment already made.

→ Forward checking makes inferences only from assigned to
unassigned variables.

Arc consistency

→ Better method for inference!

Definition (Arc consistency).
A variable u ∈ V is arc consistent relative to another variable
v, if either no constraint between them exist or we can find a
value for both that’s not a contradiction.
The network is arc consistent if every variable is arc consistent.
→ Enforcing arc consistency ⇒ removing variable domain

values until network is arc consistent.
→ Arc consistency uses forward checking!
→ Run time: O(mk3) with m constraints and maximal domain

size k.

→ Algorithm AC-3: Add all arcs to a queue, take (Xi, Xj) and
make them arc consistent. If you changed Xi, add all
adjacent arcs (Xk, Xi) with k 6= j to the queue.
The algorithm ends, if the queue is empty or the domain of
one node is empty.

Decomposition

Aim: Decompose the graph into smaller parts, which may be
easier to solve.

Theorem (Disconnected constraint graph).
If we combine all partial solutions of the disconnected networks,
we also have a solution for the whole constraint network.

Theorem (Acyclic constraint graph).
For a acyclic constraint network with n variables and maximal
domain size k we can find a solution or prove that the network
is inconsistent in time O(nk2).

6

Algorithm for Acyclic constraint graphs:

1. Obtain a directed tree from the networks constraint graph,
picking an arbitrary variable v as root and directing arcs
outwards.

2. Order the variables, such that each vertex is ordered before
its children (denote by v1, . . . , vn).

3. For i = n, . . . , 2, enforcing consistency of parents relative to
vn and if the parents have no domain left, return inconsis-
tent.
⇒ Now, every variable is arc consistent relative to its

children.
4. Run Backtracking With Inference with forward checking,

using the variable order.

Cutset Conditioning

Definition (Cutset).
Let γ be a constraint network and V0 ⊆ V . V0 is a cutset for γ, if
the subgraph of γ′s constraint graph induced by V \V0 is acyclic.
V0 is optimal, if its size is minimal among all cutsets.
→ Which subset has to be removed, such that the graph is

acyclic?
⇒ Finding optimal cutsets is NP-hard.

→ Cutset decomposition backtracks only on a cutset, and solves
a sub-problem with acyclic constraint graph at each search
leaf.

Propositional Reasoning - Principles

Propositional logic

Definition (Syntax).
Propositional Logic (PL0) is made up from propositional
variables and connectives. We define a set wff0(V0) of well-
formed propositional formulas as

• negations ¬A
• conjunctions A ∧B
• disjunctions A ∨B
• implications A⇒ B = ¬A ∨B
• equivalences A⇔ B

where A,B ∈ wff0(V0) themselves.
A propositional formula without connectives is called atomic
and complex otherwise.

Definition (Semantics).
A model M = (D0, I) for PL0 consists of the Universe D0 =
{>,⊥} and the Interpretation I, that assigns values to essential
connectives. A variable assignment ϕ : V0� D0 assigns values
to propositional variables.
The value function Iϕ assigns values to formulae.
How to work with this:

• Recursive defined base case: Iϕ(P) = ϕ(P)
• Iϕ(¬A) = I(¬)(Iϕ(A))
• Iϕ(A ∧B) = I(∧)(Iϕ(A), Iϕ(B))

Notation:
→ A is true under ϕ, if ϕ satisfies A.
→ A is false under ϕ, if ϕ falsifies A.
→ A is satisfiable in M, if ∃ϕ : Iϕ(A) = >.
→ A is valid in M, if it is true for all ϕ.
→ A is falsifiable, if ∃ϕ : Iϕ(A) = ⊥.
→ A is unsatisfiable in M, if 6 ∃ϕ : Iϕ(A) = >.
→ We say that A entails B (A |= B), if all assignments that

make A true also make B true.

Formal Systems

Definition (Logical System).
A logical system is a triple S = (L,K, |=), where L is a formal
language, K is a set and |=⊆ K × L. Members of L are called
formulae of S, members of K models for S, and |= the satisfaction
relation.

Notation:
→ A is satisfied by M, if M |= A.
→ A is falsified by M, if M 6|= A.
→ A is satisfiable in K, if ∃M ∈ K : M |= A.
→ A is valid in K, if M |= A for all M ∈ K.
→ A is falsifiable in K, if ∃M ∈ K : M 6|= A.
→ A is unsatisfiable in K, if 6 ∃M ∈ K : M |= A.

Definition (Derivation and Inference Rules).
Let S be a logical system, then we call a relation ` a derivation
relation (syntaktisch ableitbar) for S, if it

• is proof-reflexive, i.e. H ` A, if A ∈ H
• is proof-transitive, i.e. H ` A and H ′ ∪ {A} ` B, then
H ∪H ′ ` B

• monotonic, i.e. H ` A and H ⊆ H ′ imply H ′ ` A
We call (L,K, |=,`) a formal system.
An inference rule over L is written

A1, . . . , An
C

N

where Ai are called assumptions, C is called conclusion and N is
a name.
→ An inference rule without assumptions is called an axiom.
→ A set C of inference rules over L is called calculus for S.

Definition (C-derivation).
Let S be a logical system and C a calculus for S, then a C-
derivation of a formula C from a set H of hypotheses (H `C
C) is a sequence A1, . . . , Am of l-formulae, such that Am = C
and for all i, either Ai ∈ H or there is an inference rule.
⇒ Derivation can be seen as a tree!

Definition (Proof).
A derivation ∅ `C A is called a proof of A. If one exists, the A
is called a C-theorem.

Definition (Admissible).
An inference rule I is called admissible in C, if the extension of
C by I does not yield new theorems.

Definition (Propositional Logic with Hilbert-Calculus).
Rules:
K = P ⇒ Q ⇒ P , S = (P ⇒ Q ⇒ R) ⇒ (P → Q) ⇒ P ⇒ R

and
A⇒ B A

B
MP ,

A

[B/X](A)
Subst

Definition (Soundness and Completeness).
Let S be a logical system, then we call a calculus C for S

• sound or correct, if H |= A, whenever H `C A
• complete, if H `C A, whenever H |= A.

Propositional Natural Deduction Calculus

Definition (Natural Deduction ND0).
Natural Deduction has the following rules:

7

Definition (Sequent Calculus formulation).
A judgment is a meta-statement about the provability of pro-
positions.
A sequent is a judgment of the form H ` A about the provabi-
lity of the formula A from the set H of hypotheses.
Rules for propositional sequent-style natural deduction
calculus ND0

`:

Linearized notation for ND-proofs:

hyp formula ND just
1 1 A Ax
2 2 B Ax
3 1,2 A weaken 1,2
4 1 B ⇒ A ⇒ I(3)
5 A ⇒ B ⇒ A ⇒ I(4)

Machine-oriented calculi for propositional logic

Theorem (Unsatisfiability Theorem).
H |= A, if H ∪ {¬A} is unsatisfiable.

Definition (Normal Forms).
A formula is in conjunctive normal form (CNF) if it consists

of a conjunction of disjunctions of literals:
n∧
i=1

mi∨
j=1

li, j.

formula is in disjunctive normal form (DNF) if it consists of

a disjunction of conjunctions of literals:
n∨
i=1

mi∧
j=1

li, j.

→ Every formula can be written in CNF/DNF. But finding the
DNF is NP-complete.

Analytical Tableaux

→ Idea: Show about negation, that a formula is true or false.
→ Formula is analyzed in a tree to determine satisfiability.
Rules for T0 (derived rules of inference):

Definition (Derived inference rule).
Let C be a calculus, a rule of inference A1,...,AN

C is called a derived
inference rule in C, if there is a C-proof of A1, . . . , An ` C.

Definition (Saturated and closed branch).
Call a tableau saturated, if no rule applies. Call a branch closed,
if it ends in ⊥, else open.

Definition (T0-theorem).
A is a T0-theorem, if there is a closed tableau with rooted AF .

Example:

0 ((P ∧Q)⇒ (P ∨Q))F

1 (P ∧Q)T from (0)
2 (P ∨Q)F from (0)
3 PT from (1)
4 QT from (1)
5 PF from (2)
6 ⊥

Definition (Derivability).
Φ ⊆ wff0(V0) derives A in T0 (Φ `T0 A), if there is a closed
tableau starting with AF and ΦT

Definition (Soundness for Tableau).
Idea: A test calculus is sound, if it preserves satisfiability and the
goal formulae are unsatisfiable.
A tableau T is satisfiable, if set of formulae in P is satisfiable.
Important: Tableau rules transform satisfiable tableaux into sa-
tisfiable ones.
Soundness: A set Φ of propositional formulae is valid, if there
is a closed tableau T for ΦF .

Theorem (Termination for Tableaux).
The tableau procedure terminates, i.e. after a finite set of rule
applications, it reaches a tableau, so that applying the tableau
rules will only add labeled formulae Aα that are already present
on the branch.

Resolution

Definition (Resolution).
The resolution calculus operates a clause sets via a single in-
ference rule:

PT ∨A PF ∨B
A ∨B

Let S be a clause set, then we call a R derivation D : S `R 2
resolution refutabtion.
→ 2 is called empty clause.
We call a resolution refutation of CNF 0(AF) a resolution
proof for A ∈ wff0(V0).

Transformation into Clause Normal Form:

Example:
CNF-Transformation on negative formula:

¬((P ∧Q)⇒ (P ∨Q))

(P ∧Q) ∧ ¬(P ∨Q)

(P ∧Q) ∧ ¬P ∧ ¬Q
⇒ P ∧Q ∧ ¬P ∧ ¬Q

8

Resolution Algorithm:

{P} {Q} {¬Q}{¬P}

{} {}

{}

Propositional Reasoning - SAT solvers

Definition (SAT).
The SAT Problem: Given a propositional formula A (normally
in CNF), decide whether or not A is satisfiable.
→ This problem is NP-complete.
⇒ Deduction can be performed using SAT solvers.

SAT and CSP:
SAT can be viewed as a CSP problem in which all variable do-
mains are Boolean, and the constraints have unbounded arity.
Encoding CSP as SAT:
Given a constraint network γ, we can construct a CNF formula
A(γ) that is satisfiable, if γ is solvable.

Davis-Putnam-(Logemann-Loveland) Proc.

Properties:
• Unsatisfiable case:

In this case, we know that ∆ is unsatisfiable: Unit propaga-
tion is sound, in the sense that it does not reduce the set of
solutions.

• Satisfiable case:
Any extension of I to a complete interpretation satisfies ∆.

⇒ DPLL is equivalent to Backtracking with Inference and so it
is equivalent to unit propagation.

→ Worst case running time for SAT: 2n

⇒ Unit propagation is sound.
Example: ∆ = P ∨Q ∨ ¬R, ¬P ∨ ¬Q, R, P ∨ ¬Q

1. UP-Rule: R→ >
⇒ P ∨Q, ¬P ∨ ¬Q, P ∨ ¬Q

2. Splitting Rule:
2a 2b

P → ⊥ P → >
⇒ Q, ¬Q ⇒ ¬Q

3.
3a 3b

UP-Rule: Q→ > UP-Rule: Q→ ⊥
2 � X

Definition (Unit resolution).
Unit resolution (UR) is the calculus consisting of the following
inference rule:

C ∨ ¬P P

C

⇒ UR is sound.
⇒ UR is not refutation complete (not every unsatisfiable formula

can be derived).

Definition (DPLL vs. Resolution).
We define the number of decisions of a DPLL run as the total
number of times a truth value was set by either unit propagation
or the splitting rule.
⇒ If DPLL returns unsatisfiable on ∆, then ∆ `R 2 with a

resolution derivation whose length is at most the number of
decisions.

→ DPLL = tree resolution.

⇒ DPLL makes the same mistakes over and over again.
⇒ There exists ∆ whose shortest tree-resolution is exponentially

longer than their shortest resolution proof.

UP conflict analysis

Definition (Different literals).
Let β be a branch in a DPLL derivation, and P a variable on β
then we call

• Pα a choice literal, if its value is set by a splitting rule.
• Pα a implied literal, if its value is set by UP-rule.

Definition (Implication Graph).

The implication graph Gimplβ is the directed graph whose ver-
tices are labeled with the choice and implied literals along β , as
well as a separate conflict vertex 2C for every clause C that
became empty on β.
→ The implication graph is not uniquely determined by the

choice literals, it depends on ordering decision.
Example: ∆ = ¬P ∨ ¬Q, Q, P

Definition (Conflict Graph).

A sub-graph C of Gimplβ is a conflict graph if:

• C contains exactly one conflict vertex 2C .
• If l′ is a vertex in C, then all parents of l′, are vertices in C

as well.
• All vertices in C have a path to 2C .

→ Conflict graph ⇔ Starting at a conflict vertex, backchain
through the implication graph until reaching choice literals.

Clause Learning

Observation: Conflict graphs encode logical entailments.

Lemma (Clause Learning).
Let ∆ be a set of clauses and C the conflict graph at some time
point during a run of DPLL. Let L be the choice literals in C.
Then ∆ |=

∨
l∈L ¬l. ⇒ The negation of the choice literals in a

conflict graph is a valid clause.

After we learned a new clause:

1. We add Clause C =
∨
l∈L ¬l into δ.

2. We retract the last choice.
3. We set the opposite choice ¬l′ as an implied literal.
4. We run UP and analyze conflicts.

Observation: Given earlier choices l1, . . . , lk, after we learned the
new clause C = ¬l1 ∨ · · · ∨ ¬lk ∨ ¬l′, ¬l′ is now set by UP.
Clause learning vs. resolution

1. We add each learned clause to δ.
2. Clause learning renders DPLL equiv. to full resolution.

9

Note: Selecting different variables/values to split on can provably
not bring DPLL up to the power of DPLL+Clause Learning.

Which clause to learn?
→ While we only select choice literals, much more can be done.
→ For any cut through the conflict graph, with choice literals

on the “left-hand” side of the cut and the conflict literals
on the right-hand side, the literals on the left border of the
cut yield a learnable clause.

⇒ But we must care not to learn too many clauses.

→ DPLL with clause learning is called CDCL.

First order predicate logic

→ Predicate Logic (PL1) extends propositional logic with the
ability to explicitly speak about objects and their properties.

First-order Logic

In PL1, we can talk about:

• individual thinks and denote them by variables or constants
• properties of individuals
• relations of individuals
• functions on individuals
• state the existence of an individual with a certain property,

or the universality of a property

Definition (Syntax).
We are talking about two kinds of objects:

• truth values; sometimes annotated by type o
• individuals; sometimes annotated by type l

A first-order signature consists of

• connectives σo

• function constants σfk
• predicate constants σpk

→ We assume a set of individual variables Vl.
→ We call formulae without connectives or quantifiers atomic,

else complex.

Definition (Free and Bound Variables).
We call an occurrence of a variable X bound in a formula A,
if it occurs in a sub-formula ∀X.B of A. Otherwise, the variable
occurrence is free. We will notate BVar(A)(free(A)) for the
set of bound(free) variables of A.
Definition of the set free(A):

free(X) = {X}

free(f(A1, . . . , An)) =
⋃

1≤i≤n
free(Ai)

free(p(A1, . . . , An)) =
⋃

1≤i≤n
free(Ai)

free(¬A) = free(A)

free(A ∧B) = free(A) ∪ free(B)

free(∀X.A) = free(A) \ {X}

We call a formula A closed or ground, if free(A) = ∅. We call
a closed proposition a sentence.
→ Note: Bound variables can be renamed!

Definition (Semantics).
At first, we fix the universe Do of truth variables, the we assume
an arbitrary universe Dl 6= ∅ of individuals.
An interpretation I assigns values to constants. A variable
assignment ϕ : Vl� Dl maps variables into the universe.
Then, a first-order model M = (Dl, I) consists of a universe Dl

and an interpretation I.
Given a model, the value function Iϕ is recursively defined:

• Terms: Iϕ : wffl(σl)� Dl

Iϕ(X) = ϕ(X)

Iϕ(f(A1, . . . , Ak)) = I(f)(Iϕ(A1), . . . , Iϕ(Ak))

• Propositions: values assigned to formulae like in PL0.

Definition (Substitutions on Terms).
We call σ a substitution, if σ(f(A1, . . . , An)) =
f(σ(A1), . . . , σ(An)) and the support supp(σ) = {X |
σ(X) 6= X} is finite.
So, if B is a term and X is a variable, then we denote the result
of systematically replacing all occurrences of X in a term A by
B with [B/X](A).

Definition (Additional definitions to substitution).
We call intro(σ) =

⋃
X∈supp(σ) free(σ(X)) the set of variables

introduced by σ.
If σ is a substitution, then we call σ, [A/X] the extension of σ
by [A/X].
We can discharge a variable X from a substitution σ by σ−X =
σ, [X/X].

Lemma (Substitution Value Lemma for Terms).
Let A and B be terms, then Iϕ([B/X]A) = Iψ(A), where ψ =
ϕ, [Iϕ(B)/X].

Lemma (Substitution Value Lemma for Propositions).
Iϕ([B/X]A) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X]

First-order Calculi

Propositional Natural Deduction Calculus
→ Use the already given rules for natural deduction.
→ The first-order natural deduction calculus ND1 extends

ND0 by the following four rules

→ The intuition behind the rule ∀I is that a formula A with a
(free) variable X can be generalized to ∀X.A, if X stands for
an arbitrary object

→ Quantifier Rules:

Definition (Natural deduction with equality).
We add a new logical symbol for equality =∈ σp2 and fix its
semantics to I(=) = {(x, x) | x ∈ Dl}. We call the extended
logic first-order logic with equality (PL1

=).
New rules:

A = A
= I

A = B C[A]p

[B/p]C
= E

A⇔ A
⇔ I

A⇔ B C[A]p

[B/p]C
⇔= E

→ C[A]p if the formula C has a subterm A at position p and
[B/p]C is the result of replacing that subterm with B.

Definition (Positions in formulae).
Idea: Formulae are (naturally) trees, so we can use tree positions
to talk about subformulae.
A formula position p is a list of natural number that in each

10

node of a formula (tree) specifies into which child to descend. For
a formula A we denote the subformula at p with A|p.
⇒ We will sometimes write a formula C as C[A]p to indicate

that C the subformula A at position p.
Let p be a position, then [A/p]C is the formula obtained from C
by replacing the subformula at position p by A.

First-Order Inference

Tableaux

Note: There are two possible kinds of Tableaux-proofs:
1. Tableau Refutation:

Negate the formula and derive everything to false.
2. Model Generation:

Derive given formula to satisfiable assignment.

Additional rules to T0 in T1:

∀X.AT C ∈ cwffl(Σl)

[C/X](A)T
T1 : ∀

∀X.AF c ∈ (Σsk0 \H)

[c/X](A)F
T1 : ∃

T1:∀: A universally quantified formula is true, if all of the
instances of the scope are. (Note: we have to guess C!)
T1:∃: Remind, that ∃X.A ⇔ ∀X.AF .
In other words: There exists no object with property AF . We
name this object c and take it from our witness constants Σsk0 .

Free Variable Tableaux (T f1):
This is refutation calculus bases on:

• T0- rules
• Quantifier rules:

∀X.AT Y new

[Y/X](A)T
T f1 : ∀

∀X.AF free(∀X.A) = {X1, . . . , Xk} f ∈ Σskk
[f(X1, . . . , Xk)/X](A)F

T f1 : ∃

• Generalized cut rule: T f1 :⊥ instantiates the whole tableau
by σ

Aα

Bβ
α 6= β σ(A) = σ(B)

⊥ : σ
T f1 : ⊥

→ Instead of guessing (T1:∀), we instantiate with a new meta-

variable Y (T f1 :∀)
⇒ All T f1 rules except T f1 :∀ only need to be applied once!

→ Number of times T f1 :∀ occurs is called multiplicity.

→ There might be more than one opportunity to use T f1 :⊥ on a
branch.

→ There are two ways to find the right one: backtracking over
T f1 :⊥ opportunities or saturate without T f1 :⊥ and find
spanning matings.

Definition (Spanning matings).

Idea: Saturate without T f1 :⊥ and treat all cuts at the same time.

Let T be a T f! tableau, then we call a unification problem ε =
A1 =? B1 ∧ · · · ∧An =? Bn a mating for T, if ATi and BFi occur
in the same branch in T.
We say that ε is a spanning mating, if ε is unifiable and every
branch B is a mating.

⇒ A T f1 -tableau with a spanning mating induces a closed T1-
tableau.

First-Order unification:
Problem: Find a substitution σ, such that two terms are equal.
→ Solutions are called unifiers.

Definition (Most general unifier).
σ is called a most general unifier of A and B, if it’s minimal
in U(A =? B).

→ Unification can be written as an equational system:

A1 =? B1 ∧ · · · ∧An =? Bn

Lemma (Unique most general unifier).
If ε is a solved form, then ε has the unique most general unifier
σε = [B1/X1], . . . , [Bn/Xn].

Unification Algorithm with inference system U:

→ U is correct: ε `U F implies U(F) ⊆ U(ε)
→ U is complete: ε `U F implies U(ε) ⊆ U(F)
→ U is confluent: The order of the derivations does not matter.
→ If ε is unifiable but not solved, then it is U-reducible.

First-order Resolution

Extension of the rules for the CNF (CNF 1):

(∀X.A)T ∨ C Z /∈ (free(A) ∪ free(C))

[Z/X](A)T ∨ C
(∀X.A)F ∨ C {X1, . . . , Xk} = free(∀X.A)

[fkn(X1, . . . , Xk)/X](A)F ∨ C

→ CNF 1(Φ) is called the set of all clauses that can be derived
from Φ.

Two inference rules for first-order resolution R1:

AT ∨ C BF ∨D σ = mgu(A,B)

σ(C) ∨ σ(D)

Aα ∨Bα ∨ C σ = mgu(A,B)

σ(A) ∨ σ(C)

Knowledge Representation

→ Knowledge is the information necessary to support
intelligent reasoning.

→ Representation as structure and function:
⇒ Representation determines the content theory
⇒ Function determines the process model

Definition (Knowledge Representation evaluation criteria).
• Expressive Adequacy: What can be represented, what

distinctions are supported.
• Reasoning Efficiency: Results in acceptable speed?
• Primitives: Are the primitives intuitive?
• Meta-representation: Knowledge about knowledge.
• Incompleteness: Knowledge is known to be incomplete.

Definition (Semantic Networks).
A semantic network is a directed graph for representing know-
ledge. Nodes represent concepts (i.e. classes of objects) and links
represent the relation between these.

Observation: There is more knowledge in a semantic network
that is explicitly written down

Definition (Inference in semantic networks).
We call all link labels except inst (instance) and isa (is a) in a
semantic network relations.
Let N be a semantic network and R a relation in N, such that

11

A
isa/inst→ B

R→ C, then we can derive a relation A
R→ C in N.

⇒ Derived relations represent knowledge that’s implicit in
network.

We call the subgraph of a semantic network N spanned by the
isa relations the terminology and the subgraph spanned by the
inst relation the assertions.

Definition (Function/argument notation).
In this notation for semantic networks, nodes are interpreted as
arguments and links as functions.
→ inst: A ⊆ B ⇒ FOL: ∀X.A(X)⇒ B
→ isa: a ∈ A ⇒ FOL: S(a)

Definition (Semantic Web).
The semantic web is a collaborative movement led by the
W3C that promotes the inclusion of semantic content in web
pages with the aim of converting the current web, dominated
by unstructured and semistructured documents into a machine-
understandable “web of data”.
→ For better computational reading, add XML markup with

meaningful tags.
→ The current web consist of links with less meaning.
→ In semantic web, our aim is to get references and links, such

that we can do inference with that.
⇒ Inference with annotations and ontologies.

Logic-based knowledge representation

→ Logic have a well-defined semantics because it is explicitly,
transparently and systematically.

Possible problems with logic-based approaches:
• Ontology problem: Where does world knowledge come from?
• Combinatorial explosion: How to guide search?

Propositional Logic as a Set Description Language

Definition (Formal Semantics).
Let domain D bei a given set and ϕ : V0� P (D) then

• [[P]] = ϕ(P)
• [[A tB]] = [[A]] ∨ [[B]]
• [[Ā]] = D \ [[A]]

Example:

Ontologies and Description Logics

Definition (Ontology).
An ontology is a representation of the types, properties, and in-
terrelationships of the entities that really or fundamentally exist
for a particular domain of discourse. It consists of a represen-
tation format L and statements about individuals, concepts and
relations.
→ Example: PL1 is an ontology format

Definition (Description logic).
A description logic is a formal system for talking about sets
and their relations that is at least as expressive as PL0 with
set-theoretic semantics and offers individuals and relations.

Definition (D-ontology). Given a description logic D, D-
ontology consists of

• a terminology: concepts and roles and a set of concept
axioms that describe them.
→ A concept definition is a pair c = C, where c is a new

concept name and C ∈ C is a D-formula.
→ c = C is called recursive, if c occurs in C.
→ An TBox is a finite set of concept definitions and concept
axioms. It is called acyclic, if it does not contain recursive
definitions.

• assertions: a set of individuals and statements about concept
membership and role relationships for them.

Example T-Box:

Definition (Subsumption).
A subsumes B, if [[B]] ⊆ [[A]] for all interpretations D, that
satisfy A and if Axioms ⇒ B ⇒ A is valid.
This is valid, if Axioms ∧A ∧ ¬B is inconsistent.
Classification is the computation of the subsumption graph.

The description logic ALC

Motivation:
→ PL0 is not expressive enough, but PL1 is too hard.
→ Allow only restricted quantification, where quantified

variables only range over values that can be reached via a
binary relation.

Definition (Syntax).
Concepts in DLs name classes of objects like in OOP. We have
the top-concept > for true and the bottom-concept ⊥ for false.
We name binary relations like in PL1

Example: person u ∃ has child.student (parents of students)

Definition (TBox Normalization).
Normalization result can be exponential and need not terminate
on cyclic TBoxes.

Definition (Concept Axioms).
DL formulae that are not concept definitions are called concept
axioms. They normally contain additional information about
concepts.

Definition (Semantic).
A model for ALC is a pair, where D is nonempty set called
domain and [[.]] a mapping called interpretation, such that

Translation to PL1:

In addition, we have the following identities:

12

We have a negation normal form, if we have the negation
directly in front of concept names. It can be computed with the
identity rules.

Definition (ABox Formulae).
→ a : ϕ: a is a ϕ
⇒ [[a : ϕ]] = >, if [[a]] ∈ [[ϕ]] and a : ϕfo = ϕfo(a)

→ aRb : a stands in relation R to b
⇒ [[aRb]]= >, if ([[a]], [[b]]) ∈ [[R]] and aRb

fo
= R(a, b)

Definition (Tableau for ALC).
The tableau calculus TALC acts on ABox assertions (x: ϕ:) and
(xRy :) with the following rules:

Properties:

• Termination: there are no infinite sequences of rule applica-
tions

• Correctness: If ϕ is satisfiable, then C terminates with an
open branch.

• Completeness: If ϕ is in unsatisfiable, then C terminates and
all branches are closed.

• Complexity of the algorithm.

Example: Concrete difference between TBox and ABox:

Definition (Realization).
Realization is the computation of all instance relations between
ABox objects and TBox concepts.
→ Sufficient to remember the lowest concepts in the subsumption

graph

Interactions between TBox and ABox:

Definition (Tableau-based Instance Test and Realization).
Query: do the ABox and TBox together entail a:ϕ
Solution: test a: ϕ for consistency with ABox and TBox.
→ Normalize ABox wrt. TBox
→ initialize the tableau with ABox in NNF Example:

Description Logics and the Semantic Web

Definition (Resource Description Framework).
The Resource Description Framework (RDF) is a frame-
work for describing resources on the web. It is an XML vocabu-
lary developed by the W3C.
RDF is designed to be read and understood by computers, not
to be being displayed to people.
→ RDF describes resources with properties and property

values.
→ RDF uses Web identifiers (URIs) to identify resources.
⇒ A resource is anything that can have a URI.
→ A property is a resource that has a name (author).

Definition (RDF statement).
A RDF statement (also known as a triple) s consists of a re-
source (the subject), aproperty (the predicate), and a property
value (the object of s). A set of RDF tripless is called an RDF
graph.
⇒ RDF is a concrete XML vocabulary for writing statements.
→ Problem: RDF is a standoff markup format (annotate by

URIs pointing into other files)
→ Idea: RDF triples are ABox entries hRs or h:ϕ

Definition (Ontology Language for the Semantic Web).
OWL (the ontology web language) is a language for encoding
TBox information about RDF classes.
Semantic networks can be expressend in functional syntax:

• ClassAssertion formalizes the inst relation.
• ObjectPropertyAssertion formalizes relations.
• SubClassOf formalizes the isa relation.
• birds has part wings: SubClassOf (:bird ObjectSomeValues-

From(:hasPart :wing))

Definition (Sparql).
SPARQL is an RDF query language, able to retrieve and ma-
nipulate data stored in RDF. A database that stores RDF data
is called a triple store. A triple store is called a SPARQL
endpoint, if it answers SPARQL queries.

Definition (Triplestore).
A triplestore or RDF store is a purpose-built database for the
storage RDF graphs and retrieval of RDF triples through seman-
tic queries, usually variants of SPARQL.

13

