mirror of
https://gitlab.uni-marburg.de/langbeid/powersort.git
synced 2025-01-21 19:50:35 +01:00
adjust QuickSort
This commit is contained in:
parent
438d0099da
commit
fe7fe86dee
@ -28,8 +28,6 @@ package de.uni_marburg.powersort.sort.dpqs;
|
||||
*/
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.concurrent.CountedCompleter;
|
||||
import java.util.concurrent.RecursiveTask;
|
||||
|
||||
/**
|
||||
* This class implements powerful and fully optimized versions, both
|
||||
@ -37,7 +35,7 @@ import java.util.concurrent.RecursiveTask;
|
||||
* Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on all data sets, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* <p>
|
||||
* There are also additional algorithms, invoked from the Dual-Pivot
|
||||
* Quicksort, such as mixed insertion sort, merging of runs and heap
|
||||
* sort, counting sort and parallel merge sort.
|
||||
@ -46,9 +44,7 @@ import java.util.concurrent.RecursiveTask;
|
||||
* @author Jon Bentley
|
||||
* @author Josh Bloch
|
||||
* @author Doug Lea
|
||||
*
|
||||
* @version 2018.08.18
|
||||
*
|
||||
* @since 1.7 * 14
|
||||
*/
|
||||
public final class DualPivotQuicksort {
|
||||
@ -56,7 +52,8 @@ public final class DualPivotQuicksort {
|
||||
/**
|
||||
* Prevents instantiation.
|
||||
*/
|
||||
private DualPivotQuicksort() {}
|
||||
private DualPivotQuicksort() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Max array size to use mixed insertion sort.
|
||||
@ -103,7 +100,7 @@ public final class DualPivotQuicksort {
|
||||
* of the array into ascending order.
|
||||
*/
|
||||
@FunctionalInterface
|
||||
private static interface SortOperation<A> {
|
||||
private interface SortOperation<A> {
|
||||
/**
|
||||
* Sorts the specified range of the array.
|
||||
*
|
||||
@ -117,16 +114,14 @@ public final class DualPivotQuicksort {
|
||||
/**
|
||||
* Sorts the specified range of the array into ascending numerical order.
|
||||
*
|
||||
* @param elemType the class of the elements of the array to be sorted
|
||||
* @param array the array to be sorted
|
||||
* @param offset the relative offset, in bytes, from the base address of
|
||||
* the array to sort, otherwise if the array is {@code null},an absolute
|
||||
* address pointing to the first element to sort from.
|
||||
* @param low the index of the first element, inclusive, to be sorted
|
||||
* @param high the index of the last element, exclusive, to be sorted
|
||||
* @param so the method reference for the fallback implementation
|
||||
*/
|
||||
private static <A> void sort(Class<?> elemType, A array, long offset, int low, int high, SortOperation<A> so) {
|
||||
private static <A> void sort(A array, int low, int high, SortOperation<A> so) {
|
||||
so.sort(array, low, high);
|
||||
}
|
||||
|
||||
@ -151,25 +146,20 @@ public final class DualPivotQuicksort {
|
||||
/**
|
||||
* Partitions the specified range of the array using the two pivots provided.
|
||||
*
|
||||
* @param elemType the class of the array to be partitioned
|
||||
* @param array the array to be partitioned
|
||||
* @param offset the relative offset, in bytes, from the base address of
|
||||
* the array to partition, otherwise if the array is {@code null},an absolute
|
||||
* address pointing to the first element to partition from.
|
||||
* @param low the index of the first element, inclusive, to be partitioned
|
||||
* @param high the index of the last element, exclusive, to be partitioned
|
||||
* @param pivotIndex1 the index of pivot1, the first pivot
|
||||
* @param pivotIndex2 the index of pivot2, the second pivot
|
||||
* @param po the method reference for the fallback implementation
|
||||
*/
|
||||
private static <A> int[] partition(Class<?> elemType, A array, long offset, int low, int high, int pivotIndex1, int pivotIndex2, PartitionOperation<A> po) {
|
||||
return po.partition(array, low, high, pivotIndex1, pivotIndex2);
|
||||
private static <A> int[] partition(A array, int high, int pivotIndex1, int pivotIndex2, PartitionOperation<A> po) {
|
||||
return po.partition(array, Unsafe.ARRAY_INT_BASE_OFFSET, high, pivotIndex1, pivotIndex2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the array using parallel merge
|
||||
* sort and/or Dual-Pivot Quicksort.
|
||||
*
|
||||
* <p>
|
||||
* To balance the faster splitting and parallelism of merge sort
|
||||
* with the faster element partitioning of Quicksort, ranges are
|
||||
* subdivided in tiers such that, if there is enough parallelism,
|
||||
@ -181,8 +171,6 @@ public final class DualPivotQuicksort {
|
||||
* @param high the index of the last element, exclusive, to be sorted
|
||||
*/
|
||||
public static void sort(int[] a, int low, int high) {
|
||||
int size = high - low;
|
||||
|
||||
sort(a, 0, low, high);
|
||||
}
|
||||
|
||||
@ -203,7 +191,7 @@ public final class DualPivotQuicksort {
|
||||
* Run mixed insertion sort on small non-leftmost parts.
|
||||
*/
|
||||
if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) {
|
||||
sort(int.class, a, Unsafe.ARRAY_INT_BASE_OFFSET, low, high, DualPivotQuicksort::mixedInsertionSort);
|
||||
sort(a, low, high, DualPivotQuicksort::mixedInsertionSort);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -211,7 +199,7 @@ public final class DualPivotQuicksort {
|
||||
* Invoke insertion sort on small leftmost part.
|
||||
*/
|
||||
if (size < MAX_INSERTION_SORT_SIZE) {
|
||||
sort(int.class, a, Unsafe.ARRAY_INT_BASE_OFFSET, low, high, DualPivotQuicksort::insertionSort);
|
||||
sort(a, low, high, DualPivotQuicksort::insertionSort);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -264,23 +252,49 @@ public final class DualPivotQuicksort {
|
||||
* | |
|
||||
* 1 ------------o-----o------------
|
||||
*/
|
||||
if (a[e5] < a[e2]) { int t = a[e5]; a[e5] = a[e2]; a[e2] = t; }
|
||||
if (a[e4] < a[e1]) { int t = a[e4]; a[e4] = a[e1]; a[e1] = t; }
|
||||
if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; }
|
||||
if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
|
||||
if (a[e4] < a[e2]) { int t = a[e4]; a[e4] = a[e2]; a[e2] = t; }
|
||||
if (a[e5] < a[e2]) {
|
||||
int t = a[e5];
|
||||
a[e5] = a[e2];
|
||||
a[e2] = t;
|
||||
}
|
||||
if (a[e4] < a[e1]) {
|
||||
int t = a[e4];
|
||||
a[e4] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
if (a[e5] < a[e4]) {
|
||||
int t = a[e5];
|
||||
a[e5] = a[e4];
|
||||
a[e4] = t;
|
||||
}
|
||||
if (a[e2] < a[e1]) {
|
||||
int t = a[e2];
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
if (a[e4] < a[e2]) {
|
||||
int t = a[e4];
|
||||
a[e4] = a[e2];
|
||||
a[e2] = t;
|
||||
}
|
||||
|
||||
if (a3 < a[e2]) {
|
||||
if (a3 < a[e1]) {
|
||||
a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3;
|
||||
a[e3] = a[e2];
|
||||
a[e2] = a[e1];
|
||||
a[e1] = a3;
|
||||
} else {
|
||||
a[e3] = a[e2]; a[e2] = a3;
|
||||
a[e3] = a[e2];
|
||||
a[e2] = a3;
|
||||
}
|
||||
} else if (a3 > a[e4]) {
|
||||
if (a3 > a[e5]) {
|
||||
a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3;
|
||||
a[e3] = a[e4];
|
||||
a[e4] = a[e5];
|
||||
a[e5] = a3;
|
||||
} else {
|
||||
a[e3] = a[e4]; a[e4] = a3;
|
||||
a[e3] = a[e4];
|
||||
a[e4] = a3;
|
||||
}
|
||||
}
|
||||
|
||||
@ -297,7 +311,7 @@ public final class DualPivotQuicksort {
|
||||
* the pivots. These values are inexpensive approximation
|
||||
* of tertiles. Note, that pivot1 < pivot2.
|
||||
*/
|
||||
int[] pivotIndices = partition(int.class, a, Unsafe.ARRAY_INT_BASE_OFFSET, low, high, e1, e5, DualPivotQuicksort::partitionDualPivot);
|
||||
int[] pivotIndices = partition(a, high, e1, e5, DualPivotQuicksort::partitionDualPivot);
|
||||
lower = pivotIndices[0];
|
||||
upper = pivotIndices[1];
|
||||
|
||||
@ -316,7 +330,7 @@ public final class DualPivotQuicksort {
|
||||
* Use the third of the five sorted elements as the pivot.
|
||||
* This value is inexpensive approximation of the median.
|
||||
*/
|
||||
int[] pivotIndices = partition(int.class, a, Unsafe.ARRAY_INT_BASE_OFFSET, low, high, e3, e3, DualPivotQuicksort::partitionSinglePivot);
|
||||
int[] pivotIndices = partition(a, high, e3, e3, DualPivotQuicksort::partitionSinglePivot);
|
||||
lower = pivotIndices[0];
|
||||
upper = pivotIndices[1];
|
||||
/*
|
||||
@ -338,7 +352,6 @@ public final class DualPivotQuicksort {
|
||||
* @param high the index of the last element, exclusive, for partitioning
|
||||
* @param pivotIndex1 the index of pivot1, the first pivot
|
||||
* @param pivotIndex2 the index of pivot2, the second pivot
|
||||
*
|
||||
*/
|
||||
private static int[] partitionDualPivot(int[] a, int low, int high, int pivotIndex1, int pivotIndex2) {
|
||||
int end = high - 1;
|
||||
@ -363,8 +376,8 @@ public final class DualPivotQuicksort {
|
||||
/*
|
||||
* Skip elements, which are less or greater than the pivots.
|
||||
*/
|
||||
while (a[++lower] < pivot1);
|
||||
while (a[--upper] > pivot2);
|
||||
while (a[++lower] < pivot1) ;
|
||||
while (a[--upper] > pivot2) ;
|
||||
|
||||
/*
|
||||
* Backward 3-interval partitioning
|
||||
@ -410,10 +423,12 @@ public final class DualPivotQuicksort {
|
||||
/*
|
||||
* Swap the pivots into their final positions.
|
||||
*/
|
||||
a[low] = a[lower]; a[lower] = pivot1;
|
||||
a[end] = a[upper]; a[upper] = pivot2;
|
||||
a[low] = a[lower];
|
||||
a[lower] = pivot1;
|
||||
a[end] = a[upper];
|
||||
a[upper] = pivot2;
|
||||
|
||||
return new int[] {lower, upper};
|
||||
return new int[]{lower, upper};
|
||||
}
|
||||
|
||||
/**
|
||||
@ -424,7 +439,6 @@ public final class DualPivotQuicksort {
|
||||
* @param high the index of the last element, exclusive, for partitioning
|
||||
* @param pivotIndex1 the index of pivot1, the first pivot
|
||||
* @param pivotIndex2 the index of pivot2, the second pivot
|
||||
*
|
||||
*/
|
||||
private static int[] partitionSinglePivot(int[] a, int low, int high, int pivotIndex1, int pivotIndex2) {
|
||||
|
||||
@ -469,7 +483,7 @@ public final class DualPivotQuicksort {
|
||||
a[k] = pivot;
|
||||
|
||||
if (ak < pivot) { // Move a[k] to the left side
|
||||
while (a[++lower] < pivot);
|
||||
while (a[++lower] < pivot) ;
|
||||
|
||||
if (a[lower] > pivot) {
|
||||
a[--upper] = a[lower];
|
||||
@ -484,16 +498,17 @@ public final class DualPivotQuicksort {
|
||||
/*
|
||||
* Swap the pivot into its final position.
|
||||
*/
|
||||
a[low] = a[lower]; a[lower] = pivot;
|
||||
return new int[] {lower, upper};
|
||||
a[low] = a[lower];
|
||||
a[lower] = pivot;
|
||||
return new int[]{lower, upper};
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the array using mixed insertion sort.
|
||||
*
|
||||
* <p>
|
||||
* Mixed insertion sort is combination of simple insertion sort,
|
||||
* pin insertion sort and pair insertion sort.
|
||||
*
|
||||
* <p>
|
||||
* In the context of Dual-Pivot Quicksort, the pivot element
|
||||
* from the left part plays the role of sentinel, because it
|
||||
* is less than any elements from the given part. Therefore,
|
||||
@ -553,7 +568,7 @@ public final class DualPivotQuicksort {
|
||||
/*
|
||||
* Find element smaller than pin.
|
||||
*/
|
||||
while (a[--p] > pin);
|
||||
while (a[--p] > pin) ;
|
||||
|
||||
/*
|
||||
* Swap it with large element.
|
||||
@ -660,7 +675,7 @@ public final class DualPivotQuicksort {
|
||||
* @param high the index of the last element, exclusive, to be sorted
|
||||
*/
|
||||
private static void pushDown(int[] a, int p, int value, int low, int high) {
|
||||
for (int k ;; a[p] = a[p = k]) {
|
||||
for (int k; ; a[p] = a[p = k]) {
|
||||
k = (p << 1) - low + 2; // Index of the right child
|
||||
|
||||
if (k > high) {
|
||||
@ -706,19 +721,21 @@ public final class DualPivotQuicksort {
|
||||
if (a[k - 1] < a[k]) {
|
||||
|
||||
// Identify ascending sequence
|
||||
while (++k < high && a[k - 1] <= a[k]);
|
||||
while (++k < high && a[k - 1] <= a[k]) ;
|
||||
|
||||
} else if (a[k - 1] > a[k]) {
|
||||
|
||||
// Identify descending sequence
|
||||
while (++k < high && a[k - 1] >= a[k]);
|
||||
while (++k < high && a[k - 1] >= a[k]) ;
|
||||
|
||||
// Reverse into ascending order
|
||||
for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) {
|
||||
int ai = a[i]; a[i] = a[j]; a[j] = ai;
|
||||
int ai = a[i];
|
||||
a[i] = a[j];
|
||||
a[j] = ai;
|
||||
}
|
||||
} else { // Identify constant sequence
|
||||
for (int ak = a[k]; ++k < high && ak == a[k]; );
|
||||
for (int ak = a[k]; ++k < high && ak == a[k]; ) ;
|
||||
|
||||
if (k < high) {
|
||||
continue;
|
||||
@ -784,7 +801,8 @@ public final class DualPivotQuicksort {
|
||||
* Merge runs of highly structured array.
|
||||
*/
|
||||
if (count > 1) {
|
||||
int[] b; int offset = low;
|
||||
int[] b;
|
||||
int offset = low;
|
||||
|
||||
b = new int[size];
|
||||
mergeRuns(a, b, offset, 1, run, 0, count);
|
||||
@ -813,7 +831,8 @@ public final class DualPivotQuicksort {
|
||||
}
|
||||
for (int i = run[hi], j = i - offset, low = run[lo]; i > low;
|
||||
b[--j] = a[--i]
|
||||
);
|
||||
)
|
||||
;
|
||||
return b;
|
||||
}
|
||||
|
||||
@ -821,7 +840,7 @@ public final class DualPivotQuicksort {
|
||||
* Split into approximately equal parts.
|
||||
*/
|
||||
int mi = lo, rmi = (run[lo] + run[hi]) >>> 1;
|
||||
while (run[++mi + 1] <= rmi);
|
||||
while (run[++mi + 1] <= rmi) ;
|
||||
|
||||
/*
|
||||
* Merge the left and right parts.
|
||||
|
Loading…
x
Reference in New Issue
Block a user