mirror of
https://gitlab.uni-marburg.de/langbeid/powersort.git
synced 2025-01-21 19:50:35 +01:00
import TimSort
This commit is contained in:
parent
ee19bfb2f4
commit
d5254ffbeb
@ -34,10 +34,16 @@ This can also be done graphically in IntelliJ:
|
|||||||
|
|
||||||
![intellij-gradle.png](intellij-gradle.png)
|
![intellij-gradle.png](intellij-gradle.png)
|
||||||
|
|
||||||
## Test Cases
|
### Test Cases
|
||||||
|
|
||||||
Run the task "test":
|
Run the task "test":
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
./gradlew test
|
./gradlew test
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## TimSort
|
||||||
|
|
||||||
|
Imported from
|
||||||
|
- src/java.base/share/classes/java/util/TimSort.java
|
||||||
|
- src/java.base/share/classes/java/util/ComparableTimSort.java
|
||||||
|
@ -0,0 +1,907 @@
|
|||||||
|
/*
|
||||||
|
* Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
|
||||||
|
* Copyright 2009 Google Inc. All Rights Reserved.
|
||||||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||||
|
*
|
||||||
|
* This code is free software; you can redistribute it and/or modify it
|
||||||
|
* under the terms of the GNU General Public License version 2 only, as
|
||||||
|
* published by the Free Software Foundation. Oracle designates this
|
||||||
|
* particular file as subject to the "Classpath" exception as provided
|
||||||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||||||
|
*
|
||||||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||||||
|
* accompanied this code).
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License version
|
||||||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
*
|
||||||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||||
|
* or visit www.oracle.com if you need additional information or have any
|
||||||
|
* questions.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package de.uni_marburg.powersort;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This is a near duplicate of {@link TimSort}, modified for use with
|
||||||
|
* arrays of objects that implement {@link Comparable}, instead of using
|
||||||
|
* explicit comparators.
|
||||||
|
*
|
||||||
|
* <p>If you are using an optimizing VM, you may find that ComparableTimSort
|
||||||
|
* offers no performance benefit over TimSort in conjunction with a
|
||||||
|
* comparator that simply returns {@code ((Comparable)first).compareTo(Second)}.
|
||||||
|
* If this is the case, you are better off deleting ComparableTimSort to
|
||||||
|
* eliminate the code duplication. (See Arrays.java for details.)
|
||||||
|
*
|
||||||
|
* @author Josh Bloch
|
||||||
|
*/
|
||||||
|
class ComparableTimSort {
|
||||||
|
/**
|
||||||
|
* This is the minimum sized sequence that will be merged. Shorter
|
||||||
|
* sequences will be lengthened by calling binarySort. If the entire
|
||||||
|
* array is less than this length, no merges will be performed.
|
||||||
|
*
|
||||||
|
* This constant should be a power of two. It was 64 in Tim Peter's C
|
||||||
|
* implementation, but 32 was empirically determined to work better in
|
||||||
|
* this implementation. In the unlikely event that you set this constant
|
||||||
|
* to be a number that's not a power of two, you'll need to change the
|
||||||
|
* {@link #minRunLength} computation.
|
||||||
|
*
|
||||||
|
* If you decrease this constant, you must change the stackLen
|
||||||
|
* computation in the TimSort constructor, or you risk an
|
||||||
|
* ArrayOutOfBounds exception. See listsort.txt for a discussion
|
||||||
|
* of the minimum stack length required as a function of the length
|
||||||
|
* of the array being sorted and the minimum merge sequence length.
|
||||||
|
*/
|
||||||
|
private static final int MIN_MERGE = 32;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The array being sorted.
|
||||||
|
*/
|
||||||
|
private final Object[] a;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* When we get into galloping mode, we stay there until both runs win less
|
||||||
|
* often than MIN_GALLOP consecutive times.
|
||||||
|
*/
|
||||||
|
private static final int MIN_GALLOP = 7;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This controls when we get *into* galloping mode. It is initialized
|
||||||
|
* to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
|
||||||
|
* random data, and lower for highly structured data.
|
||||||
|
*/
|
||||||
|
private int minGallop = MIN_GALLOP;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Maximum initial size of tmp array, which is used for merging. The array
|
||||||
|
* can grow to accommodate demand.
|
||||||
|
*
|
||||||
|
* Unlike Tim's original C version, we do not allocate this much storage
|
||||||
|
* when sorting smaller arrays. This change was required for performance.
|
||||||
|
*/
|
||||||
|
private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Temp storage for merges. A workspace array may optionally be
|
||||||
|
* provided in constructor, and if so will be used as long as it
|
||||||
|
* is big enough.
|
||||||
|
*/
|
||||||
|
private Object[] tmp;
|
||||||
|
private int tmpBase; // base of tmp array slice
|
||||||
|
private int tmpLen; // length of tmp array slice
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A stack of pending runs yet to be merged. Run i starts at
|
||||||
|
* address base[i] and extends for len[i] elements. It's always
|
||||||
|
* true (so long as the indices are in bounds) that:
|
||||||
|
*
|
||||||
|
* runBase[i] + runLen[i] == runBase[i + 1]
|
||||||
|
*
|
||||||
|
* so we could cut the storage for this, but it's a minor amount,
|
||||||
|
* and keeping all the info explicit simplifies the code.
|
||||||
|
*/
|
||||||
|
private int stackSize = 0; // Number of pending runs on stack
|
||||||
|
private final int[] runBase;
|
||||||
|
private final int[] runLen;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a TimSort instance to maintain the state of an ongoing sort.
|
||||||
|
*
|
||||||
|
* @param a the array to be sorted
|
||||||
|
* @param work a workspace array (slice)
|
||||||
|
* @param workBase origin of usable space in work array
|
||||||
|
* @param workLen usable size of work array
|
||||||
|
*/
|
||||||
|
private ComparableTimSort(Object[] a, Object[] work, int workBase, int workLen) {
|
||||||
|
this.a = a;
|
||||||
|
|
||||||
|
// Allocate temp storage (which may be increased later if necessary)
|
||||||
|
int len = a.length;
|
||||||
|
int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
|
||||||
|
len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
|
||||||
|
if (work == null || workLen < tlen || workBase + tlen > work.length) {
|
||||||
|
tmp = new Object[tlen];
|
||||||
|
tmpBase = 0;
|
||||||
|
tmpLen = tlen;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
tmp = work;
|
||||||
|
tmpBase = workBase;
|
||||||
|
tmpLen = workLen;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Allocate runs-to-be-merged stack (which cannot be expanded). The
|
||||||
|
* stack length requirements are described in listsort.txt. The C
|
||||||
|
* version always uses the same stack length (85), but this was
|
||||||
|
* measured to be too expensive when sorting "mid-sized" arrays (e.g.,
|
||||||
|
* 100 elements) in Java. Therefore, we use smaller (but sufficiently
|
||||||
|
* large) stack lengths for smaller arrays. The "magic numbers" in the
|
||||||
|
* computation below must be changed if MIN_MERGE is decreased. See
|
||||||
|
* the MIN_MERGE declaration above for more information.
|
||||||
|
* The maximum value of 49 allows for an array up to length
|
||||||
|
* Integer.MAX_VALUE-4, if array is filled by the worst case stack size
|
||||||
|
* increasing scenario. More explanations are given in section 4 of:
|
||||||
|
* http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
|
||||||
|
*/
|
||||||
|
int stackLen = (len < 120 ? 5 :
|
||||||
|
len < 1542 ? 10 :
|
||||||
|
len < 119151 ? 24 : 49);
|
||||||
|
runBase = new int[stackLen];
|
||||||
|
runLen = new int[stackLen];
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The next method (package private and static) constitutes the
|
||||||
|
* entire API of this class.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sorts the given range, using the given workspace array slice
|
||||||
|
* for temp storage when possible. This method is designed to be
|
||||||
|
* invoked from public methods (in class Arrays) after performing
|
||||||
|
* any necessary array bounds checks and expanding parameters into
|
||||||
|
* the required forms.
|
||||||
|
*
|
||||||
|
* @param a the array to be sorted
|
||||||
|
* @param lo the index of the first element, inclusive, to be sorted
|
||||||
|
* @param hi the index of the last element, exclusive, to be sorted
|
||||||
|
* @param work a workspace array (slice)
|
||||||
|
* @param workBase origin of usable space in work array
|
||||||
|
* @param workLen usable size of work array
|
||||||
|
* @since 1.8
|
||||||
|
*/
|
||||||
|
static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
|
||||||
|
assert a != null && lo >= 0 && lo <= hi && hi <= a.length;
|
||||||
|
|
||||||
|
int nRemaining = hi - lo;
|
||||||
|
if (nRemaining < 2)
|
||||||
|
return; // Arrays of size 0 and 1 are always sorted
|
||||||
|
|
||||||
|
// If array is small, do a "mini-TimSort" with no merges
|
||||||
|
if (nRemaining < MIN_MERGE) {
|
||||||
|
int initRunLen = countRunAndMakeAscending(a, lo, hi);
|
||||||
|
binarySort(a, lo, hi, lo + initRunLen);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* March over the array once, left to right, finding natural runs,
|
||||||
|
* extending short natural runs to minRun elements, and merging runs
|
||||||
|
* to maintain stack invariant.
|
||||||
|
*/
|
||||||
|
ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
|
||||||
|
int minRun = minRunLength(nRemaining);
|
||||||
|
do {
|
||||||
|
// Identify next run
|
||||||
|
int runLen = countRunAndMakeAscending(a, lo, hi);
|
||||||
|
|
||||||
|
// If run is short, extend to min(minRun, nRemaining)
|
||||||
|
if (runLen < minRun) {
|
||||||
|
int force = nRemaining <= minRun ? nRemaining : minRun;
|
||||||
|
binarySort(a, lo, lo + force, lo + runLen);
|
||||||
|
runLen = force;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Push run onto pending-run stack, and maybe merge
|
||||||
|
ts.pushRun(lo, runLen);
|
||||||
|
ts.mergeCollapse();
|
||||||
|
|
||||||
|
// Advance to find next run
|
||||||
|
lo += runLen;
|
||||||
|
nRemaining -= runLen;
|
||||||
|
} while (nRemaining != 0);
|
||||||
|
|
||||||
|
// Merge all remaining runs to complete sort
|
||||||
|
assert lo == hi;
|
||||||
|
ts.mergeForceCollapse();
|
||||||
|
assert ts.stackSize == 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sorts the specified portion of the specified array using a binary
|
||||||
|
* insertion sort. This is the best method for sorting small numbers
|
||||||
|
* of elements. It requires O(n log n) compares, but O(n^2) data
|
||||||
|
* movement (worst case).
|
||||||
|
*
|
||||||
|
* If the initial part of the specified range is already sorted,
|
||||||
|
* this method can take advantage of it: the method assumes that the
|
||||||
|
* elements from index {@code lo}, inclusive, to {@code start},
|
||||||
|
* exclusive are already sorted.
|
||||||
|
*
|
||||||
|
* @param a the array in which a range is to be sorted
|
||||||
|
* @param lo the index of the first element in the range to be sorted
|
||||||
|
* @param hi the index after the last element in the range to be sorted
|
||||||
|
* @param start the index of the first element in the range that is
|
||||||
|
* not already known to be sorted ({@code lo <= start <= hi})
|
||||||
|
*/
|
||||||
|
@SuppressWarnings({"fallthrough", "rawtypes", "unchecked"})
|
||||||
|
private static void binarySort(Object[] a, int lo, int hi, int start) {
|
||||||
|
assert lo <= start && start <= hi;
|
||||||
|
if (start == lo)
|
||||||
|
start++;
|
||||||
|
for ( ; start < hi; start++) {
|
||||||
|
Comparable pivot = (Comparable) a[start];
|
||||||
|
|
||||||
|
// Set left (and right) to the index where a[start] (pivot) belongs
|
||||||
|
int left = lo;
|
||||||
|
int right = start;
|
||||||
|
assert left <= right;
|
||||||
|
/*
|
||||||
|
* Invariants:
|
||||||
|
* pivot >= all in [lo, left).
|
||||||
|
* pivot < all in [right, start).
|
||||||
|
*/
|
||||||
|
while (left < right) {
|
||||||
|
int mid = (left + right) >>> 1;
|
||||||
|
if (pivot.compareTo(a[mid]) < 0)
|
||||||
|
right = mid;
|
||||||
|
else
|
||||||
|
left = mid + 1;
|
||||||
|
}
|
||||||
|
assert left == right;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The invariants still hold: pivot >= all in [lo, left) and
|
||||||
|
* pivot < all in [left, start), so pivot belongs at left. Note
|
||||||
|
* that if there are elements equal to pivot, left points to the
|
||||||
|
* first slot after them -- that's why this sort is stable.
|
||||||
|
* Slide elements over to make room for pivot.
|
||||||
|
*/
|
||||||
|
int n = start - left; // The number of elements to move
|
||||||
|
// Switch is just an optimization for arraycopy in default case
|
||||||
|
switch (n) {
|
||||||
|
case 2: a[left + 2] = a[left + 1];
|
||||||
|
case 1: a[left + 1] = a[left];
|
||||||
|
break;
|
||||||
|
default: System.arraycopy(a, left, a, left + 1, n);
|
||||||
|
}
|
||||||
|
a[left] = pivot;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the length of the run beginning at the specified position in
|
||||||
|
* the specified array and reverses the run if it is descending (ensuring
|
||||||
|
* that the run will always be ascending when the method returns).
|
||||||
|
*
|
||||||
|
* A run is the longest ascending sequence with:
|
||||||
|
*
|
||||||
|
* a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
|
||||||
|
*
|
||||||
|
* or the longest descending sequence with:
|
||||||
|
*
|
||||||
|
* a[lo] > a[lo + 1] > a[lo + 2] > ...
|
||||||
|
*
|
||||||
|
* For its intended use in a stable mergesort, the strictness of the
|
||||||
|
* definition of "descending" is needed so that the call can safely
|
||||||
|
* reverse a descending sequence without violating stability.
|
||||||
|
*
|
||||||
|
* @param a the array in which a run is to be counted and possibly reversed
|
||||||
|
* @param lo index of the first element in the run
|
||||||
|
* @param hi index after the last element that may be contained in the run.
|
||||||
|
* It is required that {@code lo < hi}.
|
||||||
|
* @return the length of the run beginning at the specified position in
|
||||||
|
* the specified array
|
||||||
|
*/
|
||||||
|
@SuppressWarnings({"unchecked", "rawtypes"})
|
||||||
|
private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
|
||||||
|
assert lo < hi;
|
||||||
|
int runHi = lo + 1;
|
||||||
|
if (runHi == hi)
|
||||||
|
return 1;
|
||||||
|
|
||||||
|
// Find end of run, and reverse range if descending
|
||||||
|
if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
|
||||||
|
while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
|
||||||
|
runHi++;
|
||||||
|
reverseRange(a, lo, runHi);
|
||||||
|
} else { // Ascending
|
||||||
|
while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
|
||||||
|
runHi++;
|
||||||
|
}
|
||||||
|
|
||||||
|
return runHi - lo;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Reverse the specified range of the specified array.
|
||||||
|
*
|
||||||
|
* @param a the array in which a range is to be reversed
|
||||||
|
* @param lo the index of the first element in the range to be reversed
|
||||||
|
* @param hi the index after the last element in the range to be reversed
|
||||||
|
*/
|
||||||
|
private static void reverseRange(Object[] a, int lo, int hi) {
|
||||||
|
hi--;
|
||||||
|
while (lo < hi) {
|
||||||
|
Object t = a[lo];
|
||||||
|
a[lo++] = a[hi];
|
||||||
|
a[hi--] = t;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the minimum acceptable run length for an array of the specified
|
||||||
|
* length. Natural runs shorter than this will be extended with
|
||||||
|
* {@link #binarySort}.
|
||||||
|
*
|
||||||
|
* Roughly speaking, the computation is:
|
||||||
|
*
|
||||||
|
* If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
|
||||||
|
* Else if n is an exact power of 2, return MIN_MERGE/2.
|
||||||
|
* Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
|
||||||
|
* is close to, but strictly less than, an exact power of 2.
|
||||||
|
*
|
||||||
|
* For the rationale, see listsort.txt.
|
||||||
|
*
|
||||||
|
* @param n the length of the array to be sorted
|
||||||
|
* @return the length of the minimum run to be merged
|
||||||
|
*/
|
||||||
|
private static int minRunLength(int n) {
|
||||||
|
assert n >= 0;
|
||||||
|
int r = 0; // Becomes 1 if any 1 bits are shifted off
|
||||||
|
while (n >= MIN_MERGE) {
|
||||||
|
r |= (n & 1);
|
||||||
|
n >>= 1;
|
||||||
|
}
|
||||||
|
return n + r;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Pushes the specified run onto the pending-run stack.
|
||||||
|
*
|
||||||
|
* @param runBase index of the first element in the run
|
||||||
|
* @param runLen the number of elements in the run
|
||||||
|
*/
|
||||||
|
private void pushRun(int runBase, int runLen) {
|
||||||
|
this.runBase[stackSize] = runBase;
|
||||||
|
this.runLen[stackSize] = runLen;
|
||||||
|
stackSize++;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Examines the stack of runs waiting to be merged and merges adjacent runs
|
||||||
|
* until the stack invariants are reestablished:
|
||||||
|
*
|
||||||
|
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
|
||||||
|
* 2. runLen[i - 2] > runLen[i - 1]
|
||||||
|
*
|
||||||
|
* This method is called each time a new run is pushed onto the stack,
|
||||||
|
* so the invariants are guaranteed to hold for i < stackSize upon
|
||||||
|
* entry to the method.
|
||||||
|
*
|
||||||
|
* Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
|
||||||
|
* Richard Bubel and Reiner Hahnle, this is fixed with respect to
|
||||||
|
* the analysis in "On the Worst-Case Complexity of TimSort" by
|
||||||
|
* Nicolas Auger, Vincent Jug, Cyril Nicaud, and Carine Pivoteau.
|
||||||
|
*/
|
||||||
|
private void mergeCollapse() {
|
||||||
|
while (stackSize > 1) {
|
||||||
|
int n = stackSize - 2;
|
||||||
|
if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
|
||||||
|
n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
|
||||||
|
if (runLen[n - 1] < runLen[n + 1])
|
||||||
|
n--;
|
||||||
|
} else if (n < 0 || runLen[n] > runLen[n + 1]) {
|
||||||
|
break; // Invariant is established
|
||||||
|
}
|
||||||
|
mergeAt(n);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Merges all runs on the stack until only one remains. This method is
|
||||||
|
* called once, to complete the sort.
|
||||||
|
*/
|
||||||
|
private void mergeForceCollapse() {
|
||||||
|
while (stackSize > 1) {
|
||||||
|
int n = stackSize - 2;
|
||||||
|
if (n > 0 && runLen[n - 1] < runLen[n + 1])
|
||||||
|
n--;
|
||||||
|
mergeAt(n);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Merges the two runs at stack indices i and i+1. Run i must be
|
||||||
|
* the penultimate or antepenultimate run on the stack. In other words,
|
||||||
|
* i must be equal to stackSize-2 or stackSize-3.
|
||||||
|
*
|
||||||
|
* @param i stack index of the first of the two runs to merge
|
||||||
|
*/
|
||||||
|
@SuppressWarnings("unchecked")
|
||||||
|
private void mergeAt(int i) {
|
||||||
|
assert stackSize >= 2;
|
||||||
|
assert i >= 0;
|
||||||
|
assert i == stackSize - 2 || i == stackSize - 3;
|
||||||
|
|
||||||
|
int base1 = runBase[i];
|
||||||
|
int len1 = runLen[i];
|
||||||
|
int base2 = runBase[i + 1];
|
||||||
|
int len2 = runLen[i + 1];
|
||||||
|
assert len1 > 0 && len2 > 0;
|
||||||
|
assert base1 + len1 == base2;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Record the length of the combined runs; if i is the 3rd-last
|
||||||
|
* run now, also slide over the last run (which isn't involved
|
||||||
|
* in this merge). The current run (i+1) goes away in any case.
|
||||||
|
*/
|
||||||
|
runLen[i] = len1 + len2;
|
||||||
|
if (i == stackSize - 3) {
|
||||||
|
runBase[i + 1] = runBase[i + 2];
|
||||||
|
runLen[i + 1] = runLen[i + 2];
|
||||||
|
}
|
||||||
|
stackSize--;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Find where the first element of run2 goes in run1. Prior elements
|
||||||
|
* in run1 can be ignored (because they're already in place).
|
||||||
|
*/
|
||||||
|
int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0);
|
||||||
|
assert k >= 0;
|
||||||
|
base1 += k;
|
||||||
|
len1 -= k;
|
||||||
|
if (len1 == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Find where the last element of run1 goes in run2. Subsequent elements
|
||||||
|
* in run2 can be ignored (because they're already in place).
|
||||||
|
*/
|
||||||
|
len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a,
|
||||||
|
base2, len2, len2 - 1);
|
||||||
|
assert len2 >= 0;
|
||||||
|
if (len2 == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
// Merge remaining runs, using tmp array with min(len1, len2) elements
|
||||||
|
if (len1 <= len2)
|
||||||
|
mergeLo(base1, len1, base2, len2);
|
||||||
|
else
|
||||||
|
mergeHi(base1, len1, base2, len2);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Locates the position at which to insert the specified key into the
|
||||||
|
* specified sorted range; if the range contains an element equal to key,
|
||||||
|
* returns the index of the leftmost equal element.
|
||||||
|
*
|
||||||
|
* @param key the key whose insertion point to search for
|
||||||
|
* @param a the array in which to search
|
||||||
|
* @param base the index of the first element in the range
|
||||||
|
* @param len the length of the range; must be > 0
|
||||||
|
* @param hint the index at which to begin the search, 0 <= hint < n.
|
||||||
|
* The closer hint is to the result, the faster this method will run.
|
||||||
|
* @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
|
||||||
|
* pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
|
||||||
|
* In other words, key belongs at index b + k; or in other words,
|
||||||
|
* the first k elements of a should precede key, and the last n - k
|
||||||
|
* should follow it.
|
||||||
|
*/
|
||||||
|
private static int gallopLeft(Comparable<Object> key, Object[] a,
|
||||||
|
int base, int len, int hint) {
|
||||||
|
assert len > 0 && hint >= 0 && hint < len;
|
||||||
|
|
||||||
|
int lastOfs = 0;
|
||||||
|
int ofs = 1;
|
||||||
|
if (key.compareTo(a[base + hint]) > 0) {
|
||||||
|
// Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
|
||||||
|
int maxOfs = len - hint;
|
||||||
|
while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) {
|
||||||
|
lastOfs = ofs;
|
||||||
|
ofs = (ofs << 1) + 1;
|
||||||
|
if (ofs <= 0) // int overflow
|
||||||
|
ofs = maxOfs;
|
||||||
|
}
|
||||||
|
if (ofs > maxOfs)
|
||||||
|
ofs = maxOfs;
|
||||||
|
|
||||||
|
// Make offsets relative to base
|
||||||
|
lastOfs += hint;
|
||||||
|
ofs += hint;
|
||||||
|
} else { // key <= a[base + hint]
|
||||||
|
// Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
|
||||||
|
final int maxOfs = hint + 1;
|
||||||
|
while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) {
|
||||||
|
lastOfs = ofs;
|
||||||
|
ofs = (ofs << 1) + 1;
|
||||||
|
if (ofs <= 0) // int overflow
|
||||||
|
ofs = maxOfs;
|
||||||
|
}
|
||||||
|
if (ofs > maxOfs)
|
||||||
|
ofs = maxOfs;
|
||||||
|
|
||||||
|
// Make offsets relative to base
|
||||||
|
int tmp = lastOfs;
|
||||||
|
lastOfs = hint - ofs;
|
||||||
|
ofs = hint - tmp;
|
||||||
|
}
|
||||||
|
assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
|
||||||
|
* to the right of lastOfs but no farther right than ofs. Do a binary
|
||||||
|
* search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
|
||||||
|
*/
|
||||||
|
lastOfs++;
|
||||||
|
while (lastOfs < ofs) {
|
||||||
|
int m = lastOfs + ((ofs - lastOfs) >>> 1);
|
||||||
|
|
||||||
|
if (key.compareTo(a[base + m]) > 0)
|
||||||
|
lastOfs = m + 1; // a[base + m] < key
|
||||||
|
else
|
||||||
|
ofs = m; // key <= a[base + m]
|
||||||
|
}
|
||||||
|
assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
|
||||||
|
return ofs;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Like gallopLeft, except that if the range contains an element equal to
|
||||||
|
* key, gallopRight returns the index after the rightmost equal element.
|
||||||
|
*
|
||||||
|
* @param key the key whose insertion point to search for
|
||||||
|
* @param a the array in which to search
|
||||||
|
* @param base the index of the first element in the range
|
||||||
|
* @param len the length of the range; must be > 0
|
||||||
|
* @param hint the index at which to begin the search, 0 <= hint < n.
|
||||||
|
* The closer hint is to the result, the faster this method will run.
|
||||||
|
* @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
|
||||||
|
*/
|
||||||
|
private static int gallopRight(Comparable<Object> key, Object[] a,
|
||||||
|
int base, int len, int hint) {
|
||||||
|
assert len > 0 && hint >= 0 && hint < len;
|
||||||
|
|
||||||
|
int ofs = 1;
|
||||||
|
int lastOfs = 0;
|
||||||
|
if (key.compareTo(a[base + hint]) < 0) {
|
||||||
|
// Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
|
||||||
|
int maxOfs = hint + 1;
|
||||||
|
while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) {
|
||||||
|
lastOfs = ofs;
|
||||||
|
ofs = (ofs << 1) + 1;
|
||||||
|
if (ofs <= 0) // int overflow
|
||||||
|
ofs = maxOfs;
|
||||||
|
}
|
||||||
|
if (ofs > maxOfs)
|
||||||
|
ofs = maxOfs;
|
||||||
|
|
||||||
|
// Make offsets relative to b
|
||||||
|
int tmp = lastOfs;
|
||||||
|
lastOfs = hint - ofs;
|
||||||
|
ofs = hint - tmp;
|
||||||
|
} else { // a[b + hint] <= key
|
||||||
|
// Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
|
||||||
|
int maxOfs = len - hint;
|
||||||
|
while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) {
|
||||||
|
lastOfs = ofs;
|
||||||
|
ofs = (ofs << 1) + 1;
|
||||||
|
if (ofs <= 0) // int overflow
|
||||||
|
ofs = maxOfs;
|
||||||
|
}
|
||||||
|
if (ofs > maxOfs)
|
||||||
|
ofs = maxOfs;
|
||||||
|
|
||||||
|
// Make offsets relative to b
|
||||||
|
lastOfs += hint;
|
||||||
|
ofs += hint;
|
||||||
|
}
|
||||||
|
assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
|
||||||
|
* the right of lastOfs but no farther right than ofs. Do a binary
|
||||||
|
* search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
|
||||||
|
*/
|
||||||
|
lastOfs++;
|
||||||
|
while (lastOfs < ofs) {
|
||||||
|
int m = lastOfs + ((ofs - lastOfs) >>> 1);
|
||||||
|
|
||||||
|
if (key.compareTo(a[base + m]) < 0)
|
||||||
|
ofs = m; // key < a[b + m]
|
||||||
|
else
|
||||||
|
lastOfs = m + 1; // a[b + m] <= key
|
||||||
|
}
|
||||||
|
assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
|
||||||
|
return ofs;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Merges two adjacent runs in place, in a stable fashion. The first
|
||||||
|
* element of the first run must be greater than the first element of the
|
||||||
|
* second run (a[base1] > a[base2]), and the last element of the first run
|
||||||
|
* (a[base1 + len1-1]) must be greater than all elements of the second run.
|
||||||
|
*
|
||||||
|
* For performance, this method should be called only when len1 <= len2;
|
||||||
|
* its twin, mergeHi should be called if len1 >= len2. (Either method
|
||||||
|
* may be called if len1 == len2.)
|
||||||
|
*
|
||||||
|
* @param base1 index of first element in first run to be merged
|
||||||
|
* @param len1 length of first run to be merged (must be > 0)
|
||||||
|
* @param base2 index of first element in second run to be merged
|
||||||
|
* (must be aBase + aLen)
|
||||||
|
* @param len2 length of second run to be merged (must be > 0)
|
||||||
|
*/
|
||||||
|
@SuppressWarnings({"unchecked", "rawtypes"})
|
||||||
|
private void mergeLo(int base1, int len1, int base2, int len2) {
|
||||||
|
assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
|
||||||
|
|
||||||
|
// Copy first run into temp array
|
||||||
|
Object[] a = this.a; // For performance
|
||||||
|
Object[] tmp = ensureCapacity(len1);
|
||||||
|
|
||||||
|
int cursor1 = tmpBase; // Indexes into tmp array
|
||||||
|
int cursor2 = base2; // Indexes int a
|
||||||
|
int dest = base1; // Indexes int a
|
||||||
|
System.arraycopy(a, base1, tmp, cursor1, len1);
|
||||||
|
|
||||||
|
// Move first element of second run and deal with degenerate cases
|
||||||
|
a[dest++] = a[cursor2++];
|
||||||
|
if (--len2 == 0) {
|
||||||
|
System.arraycopy(tmp, cursor1, a, dest, len1);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (len1 == 1) {
|
||||||
|
System.arraycopy(a, cursor2, a, dest, len2);
|
||||||
|
a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int minGallop = this.minGallop; // Use local variable for performance
|
||||||
|
outer:
|
||||||
|
while (true) {
|
||||||
|
int count1 = 0; // Number of times in a row that first run won
|
||||||
|
int count2 = 0; // Number of times in a row that second run won
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Do the straightforward thing until (if ever) one run starts
|
||||||
|
* winning consistently.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
assert len1 > 1 && len2 > 0;
|
||||||
|
if (((Comparable) a[cursor2]).compareTo(tmp[cursor1]) < 0) {
|
||||||
|
a[dest++] = a[cursor2++];
|
||||||
|
count2++;
|
||||||
|
count1 = 0;
|
||||||
|
if (--len2 == 0)
|
||||||
|
break outer;
|
||||||
|
} else {
|
||||||
|
a[dest++] = tmp[cursor1++];
|
||||||
|
count1++;
|
||||||
|
count2 = 0;
|
||||||
|
if (--len1 == 1)
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
} while ((count1 | count2) < minGallop);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* One run is winning so consistently that galloping may be a
|
||||||
|
* huge win. So try that, and continue galloping until (if ever)
|
||||||
|
* neither run appears to be winning consistently anymore.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
assert len1 > 1 && len2 > 0;
|
||||||
|
count1 = gallopRight((Comparable) a[cursor2], tmp, cursor1, len1, 0);
|
||||||
|
if (count1 != 0) {
|
||||||
|
System.arraycopy(tmp, cursor1, a, dest, count1);
|
||||||
|
dest += count1;
|
||||||
|
cursor1 += count1;
|
||||||
|
len1 -= count1;
|
||||||
|
if (len1 <= 1) // len1 == 1 || len1 == 0
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
a[dest++] = a[cursor2++];
|
||||||
|
if (--len2 == 0)
|
||||||
|
break outer;
|
||||||
|
|
||||||
|
count2 = gallopLeft((Comparable) tmp[cursor1], a, cursor2, len2, 0);
|
||||||
|
if (count2 != 0) {
|
||||||
|
System.arraycopy(a, cursor2, a, dest, count2);
|
||||||
|
dest += count2;
|
||||||
|
cursor2 += count2;
|
||||||
|
len2 -= count2;
|
||||||
|
if (len2 == 0)
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
a[dest++] = tmp[cursor1++];
|
||||||
|
if (--len1 == 1)
|
||||||
|
break outer;
|
||||||
|
minGallop--;
|
||||||
|
} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
|
||||||
|
if (minGallop < 0)
|
||||||
|
minGallop = 0;
|
||||||
|
minGallop += 2; // Penalize for leaving gallop mode
|
||||||
|
} // End of "outer" loop
|
||||||
|
this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
|
||||||
|
|
||||||
|
if (len1 == 1) {
|
||||||
|
assert len2 > 0;
|
||||||
|
System.arraycopy(a, cursor2, a, dest, len2);
|
||||||
|
a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
|
||||||
|
} else if (len1 == 0) {
|
||||||
|
throw new IllegalArgumentException(
|
||||||
|
"Comparison method violates its general contract!");
|
||||||
|
} else {
|
||||||
|
assert len2 == 0;
|
||||||
|
assert len1 > 1;
|
||||||
|
System.arraycopy(tmp, cursor1, a, dest, len1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Like mergeLo, except that this method should be called only if
|
||||||
|
* len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
|
||||||
|
* may be called if len1 == len2.)
|
||||||
|
*
|
||||||
|
* @param base1 index of first element in first run to be merged
|
||||||
|
* @param len1 length of first run to be merged (must be > 0)
|
||||||
|
* @param base2 index of first element in second run to be merged
|
||||||
|
* (must be aBase + aLen)
|
||||||
|
* @param len2 length of second run to be merged (must be > 0)
|
||||||
|
*/
|
||||||
|
@SuppressWarnings({"unchecked", "rawtypes"})
|
||||||
|
private void mergeHi(int base1, int len1, int base2, int len2) {
|
||||||
|
assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
|
||||||
|
|
||||||
|
// Copy second run into temp array
|
||||||
|
Object[] a = this.a; // For performance
|
||||||
|
Object[] tmp = ensureCapacity(len2);
|
||||||
|
int tmpBase = this.tmpBase;
|
||||||
|
System.arraycopy(a, base2, tmp, tmpBase, len2);
|
||||||
|
|
||||||
|
int cursor1 = base1 + len1 - 1; // Indexes into a
|
||||||
|
int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
|
||||||
|
int dest = base2 + len2 - 1; // Indexes into a
|
||||||
|
|
||||||
|
// Move last element of first run and deal with degenerate cases
|
||||||
|
a[dest--] = a[cursor1--];
|
||||||
|
if (--len1 == 0) {
|
||||||
|
System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (len2 == 1) {
|
||||||
|
dest -= len1;
|
||||||
|
cursor1 -= len1;
|
||||||
|
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
|
||||||
|
a[dest] = tmp[cursor2];
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int minGallop = this.minGallop; // Use local variable for performance
|
||||||
|
outer:
|
||||||
|
while (true) {
|
||||||
|
int count1 = 0; // Number of times in a row that first run won
|
||||||
|
int count2 = 0; // Number of times in a row that second run won
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Do the straightforward thing until (if ever) one run
|
||||||
|
* appears to win consistently.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
assert len1 > 0 && len2 > 1;
|
||||||
|
if (((Comparable) tmp[cursor2]).compareTo(a[cursor1]) < 0) {
|
||||||
|
a[dest--] = a[cursor1--];
|
||||||
|
count1++;
|
||||||
|
count2 = 0;
|
||||||
|
if (--len1 == 0)
|
||||||
|
break outer;
|
||||||
|
} else {
|
||||||
|
a[dest--] = tmp[cursor2--];
|
||||||
|
count2++;
|
||||||
|
count1 = 0;
|
||||||
|
if (--len2 == 1)
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
} while ((count1 | count2) < minGallop);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* One run is winning so consistently that galloping may be a
|
||||||
|
* huge win. So try that, and continue galloping until (if ever)
|
||||||
|
* neither run appears to be winning consistently anymore.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
assert len1 > 0 && len2 > 1;
|
||||||
|
count1 = len1 - gallopRight((Comparable) tmp[cursor2], a, base1, len1, len1 - 1);
|
||||||
|
if (count1 != 0) {
|
||||||
|
dest -= count1;
|
||||||
|
cursor1 -= count1;
|
||||||
|
len1 -= count1;
|
||||||
|
System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
|
||||||
|
if (len1 == 0)
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
a[dest--] = tmp[cursor2--];
|
||||||
|
if (--len2 == 1)
|
||||||
|
break outer;
|
||||||
|
|
||||||
|
count2 = len2 - gallopLeft((Comparable) a[cursor1], tmp, tmpBase, len2, len2 - 1);
|
||||||
|
if (count2 != 0) {
|
||||||
|
dest -= count2;
|
||||||
|
cursor2 -= count2;
|
||||||
|
len2 -= count2;
|
||||||
|
System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
|
||||||
|
if (len2 <= 1)
|
||||||
|
break outer; // len2 == 1 || len2 == 0
|
||||||
|
}
|
||||||
|
a[dest--] = a[cursor1--];
|
||||||
|
if (--len1 == 0)
|
||||||
|
break outer;
|
||||||
|
minGallop--;
|
||||||
|
} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
|
||||||
|
if (minGallop < 0)
|
||||||
|
minGallop = 0;
|
||||||
|
minGallop += 2; // Penalize for leaving gallop mode
|
||||||
|
} // End of "outer" loop
|
||||||
|
this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
|
||||||
|
|
||||||
|
if (len2 == 1) {
|
||||||
|
assert len1 > 0;
|
||||||
|
dest -= len1;
|
||||||
|
cursor1 -= len1;
|
||||||
|
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
|
||||||
|
a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
|
||||||
|
} else if (len2 == 0) {
|
||||||
|
throw new IllegalArgumentException(
|
||||||
|
"Comparison method violates its general contract!");
|
||||||
|
} else {
|
||||||
|
assert len1 == 0;
|
||||||
|
assert len2 > 0;
|
||||||
|
System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensures that the external array tmp has at least the specified
|
||||||
|
* number of elements, increasing its size if necessary. The size
|
||||||
|
* increases exponentially to ensure amortized linear time complexity.
|
||||||
|
*
|
||||||
|
* @param minCapacity the minimum required capacity of the tmp array
|
||||||
|
* @return tmp, whether or not it grew
|
||||||
|
*/
|
||||||
|
private Object[] ensureCapacity(int minCapacity) {
|
||||||
|
if (tmpLen < minCapacity) {
|
||||||
|
// Compute smallest power of 2 > minCapacity
|
||||||
|
int newSize = -1 >>> Integer.numberOfLeadingZeros(minCapacity);
|
||||||
|
newSize++;
|
||||||
|
|
||||||
|
if (newSize < 0) // Not bloody likely!
|
||||||
|
newSize = minCapacity;
|
||||||
|
else
|
||||||
|
newSize = Math.min(newSize, a.length >>> 1);
|
||||||
|
|
||||||
|
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
|
||||||
|
Object[] newArray = new Object[newSize];
|
||||||
|
tmp = newArray;
|
||||||
|
tmpLen = newSize;
|
||||||
|
tmpBase = 0;
|
||||||
|
}
|
||||||
|
return tmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
942
app/src/main/java/de/uni_marburg/powersort/TimSort.java
Normal file
942
app/src/main/java/de/uni_marburg/powersort/TimSort.java
Normal file
@ -0,0 +1,942 @@
|
|||||||
|
/*
|
||||||
|
* Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
|
||||||
|
* Copyright 2009 Google Inc. All Rights Reserved.
|
||||||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||||
|
*
|
||||||
|
* This code is free software; you can redistribute it and/or modify it
|
||||||
|
* under the terms of the GNU General Public License version 2 only, as
|
||||||
|
* published by the Free Software Foundation. Oracle designates this
|
||||||
|
* particular file as subject to the "Classpath" exception as provided
|
||||||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||||||
|
*
|
||||||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||||||
|
* accompanied this code).
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License version
|
||||||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
*
|
||||||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||||
|
* or visit www.oracle.com if you need additional information or have any
|
||||||
|
* questions.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package de.uni_marburg.powersort;
|
||||||
|
|
||||||
|
import java.util.Comparator;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A stable, adaptive, iterative mergesort that requires far fewer than
|
||||||
|
* n lg(n) comparisons when running on partially sorted arrays, while
|
||||||
|
* offering performance comparable to a traditional mergesort when run
|
||||||
|
* on random arrays. Like all proper mergesorts, this sort is stable and
|
||||||
|
* runs O(n log n) time (worst case). In the worst case, this sort requires
|
||||||
|
* temporary storage space for n/2 object references; in the best case,
|
||||||
|
* it requires only a small constant amount of space.
|
||||||
|
*
|
||||||
|
* This implementation was adapted from Tim Peters's list sort for
|
||||||
|
* Python, which is described in detail here:
|
||||||
|
*
|
||||||
|
* http://svn.python.org/projects/python/trunk/Objects/listsort.txt
|
||||||
|
*
|
||||||
|
* Tim's C code may be found here:
|
||||||
|
*
|
||||||
|
* http://svn.python.org/projects/python/trunk/Objects/listobject.c
|
||||||
|
*
|
||||||
|
* The underlying techniques are described in this paper (and may have
|
||||||
|
* even earlier origins):
|
||||||
|
*
|
||||||
|
* "Optimistic Sorting and Information Theoretic Complexity"
|
||||||
|
* Peter McIlroy
|
||||||
|
* SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
|
||||||
|
* pp 467-474, Austin, Texas, 25-27 January 1993.
|
||||||
|
*
|
||||||
|
* While the API to this class consists solely of static methods, it is
|
||||||
|
* (privately) instantiable; a TimSort instance holds the state of an ongoing
|
||||||
|
* sort, assuming the input array is large enough to warrant the full-blown
|
||||||
|
* TimSort. Small arrays are sorted in place, using a binary insertion sort.
|
||||||
|
*
|
||||||
|
* @author Josh Bloch
|
||||||
|
*/
|
||||||
|
class TimSort<T> {
|
||||||
|
/**
|
||||||
|
* This is the minimum sized sequence that will be merged. Shorter
|
||||||
|
* sequences will be lengthened by calling binarySort. If the entire
|
||||||
|
* array is less than this length, no merges will be performed.
|
||||||
|
*
|
||||||
|
* This constant should be a power of two. It was 64 in Tim Peter's C
|
||||||
|
* implementation, but 32 was empirically determined to work better in
|
||||||
|
* this implementation. In the unlikely event that you set this constant
|
||||||
|
* to be a number that's not a power of two, you'll need to change the
|
||||||
|
* {@link #minRunLength} computation.
|
||||||
|
*
|
||||||
|
* If you decrease this constant, you must change the stackLen
|
||||||
|
* computation in the TimSort constructor, or you risk an
|
||||||
|
* ArrayOutOfBounds exception. See listsort.txt for a discussion
|
||||||
|
* of the minimum stack length required as a function of the length
|
||||||
|
* of the array being sorted and the minimum merge sequence length.
|
||||||
|
*/
|
||||||
|
private static final int MIN_MERGE = 32;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The array being sorted.
|
||||||
|
*/
|
||||||
|
private final T[] a;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The comparator for this sort.
|
||||||
|
*/
|
||||||
|
private final Comparator<? super T> c;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* When we get into galloping mode, we stay there until both runs win less
|
||||||
|
* often than MIN_GALLOP consecutive times.
|
||||||
|
*/
|
||||||
|
private static final int MIN_GALLOP = 7;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This controls when we get *into* galloping mode. It is initialized
|
||||||
|
* to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
|
||||||
|
* random data, and lower for highly structured data.
|
||||||
|
*/
|
||||||
|
private int minGallop = MIN_GALLOP;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Maximum initial size of tmp array, which is used for merging. The array
|
||||||
|
* can grow to accommodate demand.
|
||||||
|
*
|
||||||
|
* Unlike Tim's original C version, we do not allocate this much storage
|
||||||
|
* when sorting smaller arrays. This change was required for performance.
|
||||||
|
*/
|
||||||
|
private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Temp storage for merges. A workspace array may optionally be
|
||||||
|
* provided in constructor, and if so will be used as long as it
|
||||||
|
* is big enough.
|
||||||
|
*/
|
||||||
|
private T[] tmp;
|
||||||
|
private int tmpBase; // base of tmp array slice
|
||||||
|
private int tmpLen; // length of tmp array slice
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A stack of pending runs yet to be merged. Run i starts at
|
||||||
|
* address base[i] and extends for len[i] elements. It's always
|
||||||
|
* true (so long as the indices are in bounds) that:
|
||||||
|
*
|
||||||
|
* runBase[i] + runLen[i] == runBase[i + 1]
|
||||||
|
*
|
||||||
|
* so we could cut the storage for this, but it's a minor amount,
|
||||||
|
* and keeping all the info explicit simplifies the code.
|
||||||
|
*/
|
||||||
|
private int stackSize = 0; // Number of pending runs on stack
|
||||||
|
private final int[] runBase;
|
||||||
|
private final int[] runLen;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a TimSort instance to maintain the state of an ongoing sort.
|
||||||
|
*
|
||||||
|
* @param a the array to be sorted
|
||||||
|
* @param c the comparator to determine the order of the sort
|
||||||
|
* @param work a workspace array (slice)
|
||||||
|
* @param workBase origin of usable space in work array
|
||||||
|
* @param workLen usable size of work array
|
||||||
|
*/
|
||||||
|
private TimSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) {
|
||||||
|
this.a = a;
|
||||||
|
this.c = c;
|
||||||
|
|
||||||
|
// Allocate temp storage (which may be increased later if necessary)
|
||||||
|
int len = a.length;
|
||||||
|
int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
|
||||||
|
len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
|
||||||
|
if (work == null || workLen < tlen || workBase + tlen > work.length) {
|
||||||
|
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
|
||||||
|
T[] newArray = (T[])java.lang.reflect.Array.newInstance
|
||||||
|
(a.getClass().getComponentType(), tlen);
|
||||||
|
tmp = newArray;
|
||||||
|
tmpBase = 0;
|
||||||
|
tmpLen = tlen;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
tmp = work;
|
||||||
|
tmpBase = workBase;
|
||||||
|
tmpLen = workLen;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Allocate runs-to-be-merged stack (which cannot be expanded). The
|
||||||
|
* stack length requirements are described in listsort.txt. The C
|
||||||
|
* version always uses the same stack length (85), but this was
|
||||||
|
* measured to be too expensive when sorting "mid-sized" arrays (e.g.,
|
||||||
|
* 100 elements) in Java. Therefore, we use smaller (but sufficiently
|
||||||
|
* large) stack lengths for smaller arrays. The "magic numbers" in the
|
||||||
|
* computation below must be changed if MIN_MERGE is decreased. See
|
||||||
|
* the MIN_MERGE declaration above for more information.
|
||||||
|
* The maximum value of 49 allows for an array up to length
|
||||||
|
* Integer.MAX_VALUE-4, if array is filled by the worst case stack size
|
||||||
|
* increasing scenario. More explanations are given in section 4 of:
|
||||||
|
* http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
|
||||||
|
*/
|
||||||
|
int stackLen = (len < 120 ? 5 :
|
||||||
|
len < 1542 ? 10 :
|
||||||
|
len < 119151 ? 24 : 49);
|
||||||
|
runBase = new int[stackLen];
|
||||||
|
runLen = new int[stackLen];
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The next method (package private and static) constitutes the
|
||||||
|
* entire API of this class.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sorts the given range, using the given workspace array slice
|
||||||
|
* for temp storage when possible. This method is designed to be
|
||||||
|
* invoked from public methods (in class Arrays) after performing
|
||||||
|
* any necessary array bounds checks and expanding parameters into
|
||||||
|
* the required forms.
|
||||||
|
*
|
||||||
|
* @param a the array to be sorted
|
||||||
|
* @param lo the index of the first element, inclusive, to be sorted
|
||||||
|
* @param hi the index of the last element, exclusive, to be sorted
|
||||||
|
* @param c the comparator to use
|
||||||
|
* @param work a workspace array (slice)
|
||||||
|
* @param workBase origin of usable space in work array
|
||||||
|
* @param workLen usable size of work array
|
||||||
|
* @since 1.8
|
||||||
|
*/
|
||||||
|
static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
|
||||||
|
T[] work, int workBase, int workLen) {
|
||||||
|
assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
|
||||||
|
|
||||||
|
int nRemaining = hi - lo;
|
||||||
|
if (nRemaining < 2)
|
||||||
|
return; // Arrays of size 0 and 1 are always sorted
|
||||||
|
|
||||||
|
// If array is small, do a "mini-TimSort" with no merges
|
||||||
|
if (nRemaining < MIN_MERGE) {
|
||||||
|
int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
|
||||||
|
binarySort(a, lo, hi, lo + initRunLen, c);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* March over the array once, left to right, finding natural runs,
|
||||||
|
* extending short natural runs to minRun elements, and merging runs
|
||||||
|
* to maintain stack invariant.
|
||||||
|
*/
|
||||||
|
TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);
|
||||||
|
int minRun = minRunLength(nRemaining);
|
||||||
|
do {
|
||||||
|
// Identify next run
|
||||||
|
int runLen = countRunAndMakeAscending(a, lo, hi, c);
|
||||||
|
|
||||||
|
// If run is short, extend to min(minRun, nRemaining)
|
||||||
|
if (runLen < minRun) {
|
||||||
|
int force = nRemaining <= minRun ? nRemaining : minRun;
|
||||||
|
binarySort(a, lo, lo + force, lo + runLen, c);
|
||||||
|
runLen = force;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Push run onto pending-run stack, and maybe merge
|
||||||
|
ts.pushRun(lo, runLen);
|
||||||
|
ts.mergeCollapse();
|
||||||
|
|
||||||
|
// Advance to find next run
|
||||||
|
lo += runLen;
|
||||||
|
nRemaining -= runLen;
|
||||||
|
} while (nRemaining != 0);
|
||||||
|
|
||||||
|
// Merge all remaining runs to complete sort
|
||||||
|
assert lo == hi;
|
||||||
|
ts.mergeForceCollapse();
|
||||||
|
assert ts.stackSize == 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sorts the specified portion of the specified array using a binary
|
||||||
|
* insertion sort. This is the best method for sorting small numbers
|
||||||
|
* of elements. It requires O(n log n) compares, but O(n^2) data
|
||||||
|
* movement (worst case).
|
||||||
|
*
|
||||||
|
* If the initial part of the specified range is already sorted,
|
||||||
|
* this method can take advantage of it: the method assumes that the
|
||||||
|
* elements from index {@code lo}, inclusive, to {@code start},
|
||||||
|
* exclusive are already sorted.
|
||||||
|
*
|
||||||
|
* @param a the array in which a range is to be sorted
|
||||||
|
* @param lo the index of the first element in the range to be sorted
|
||||||
|
* @param hi the index after the last element in the range to be sorted
|
||||||
|
* @param start the index of the first element in the range that is
|
||||||
|
* not already known to be sorted ({@code lo <= start <= hi})
|
||||||
|
* @param c comparator to used for the sort
|
||||||
|
*/
|
||||||
|
@SuppressWarnings("fallthrough")
|
||||||
|
private static <T> void binarySort(T[] a, int lo, int hi, int start,
|
||||||
|
Comparator<? super T> c) {
|
||||||
|
assert lo <= start && start <= hi;
|
||||||
|
if (start == lo)
|
||||||
|
start++;
|
||||||
|
for ( ; start < hi; start++) {
|
||||||
|
T pivot = a[start];
|
||||||
|
|
||||||
|
// Set left (and right) to the index where a[start] (pivot) belongs
|
||||||
|
int left = lo;
|
||||||
|
int right = start;
|
||||||
|
assert left <= right;
|
||||||
|
/*
|
||||||
|
* Invariants:
|
||||||
|
* pivot >= all in [lo, left).
|
||||||
|
* pivot < all in [right, start).
|
||||||
|
*/
|
||||||
|
while (left < right) {
|
||||||
|
int mid = (left + right) >>> 1;
|
||||||
|
if (c.compare(pivot, a[mid]) < 0)
|
||||||
|
right = mid;
|
||||||
|
else
|
||||||
|
left = mid + 1;
|
||||||
|
}
|
||||||
|
assert left == right;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The invariants still hold: pivot >= all in [lo, left) and
|
||||||
|
* pivot < all in [left, start), so pivot belongs at left. Note
|
||||||
|
* that if there are elements equal to pivot, left points to the
|
||||||
|
* first slot after them -- that's why this sort is stable.
|
||||||
|
* Slide elements over to make room for pivot.
|
||||||
|
*/
|
||||||
|
int n = start - left; // The number of elements to move
|
||||||
|
// Switch is just an optimization for arraycopy in default case
|
||||||
|
switch (n) {
|
||||||
|
case 2: a[left + 2] = a[left + 1];
|
||||||
|
case 1: a[left + 1] = a[left];
|
||||||
|
break;
|
||||||
|
default: System.arraycopy(a, left, a, left + 1, n);
|
||||||
|
}
|
||||||
|
a[left] = pivot;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the length of the run beginning at the specified position in
|
||||||
|
* the specified array and reverses the run if it is descending (ensuring
|
||||||
|
* that the run will always be ascending when the method returns).
|
||||||
|
*
|
||||||
|
* A run is the longest ascending sequence with:
|
||||||
|
*
|
||||||
|
* a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
|
||||||
|
*
|
||||||
|
* or the longest descending sequence with:
|
||||||
|
*
|
||||||
|
* a[lo] > a[lo + 1] > a[lo + 2] > ...
|
||||||
|
*
|
||||||
|
* For its intended use in a stable mergesort, the strictness of the
|
||||||
|
* definition of "descending" is needed so that the call can safely
|
||||||
|
* reverse a descending sequence without violating stability.
|
||||||
|
*
|
||||||
|
* @param a the array in which a run is to be counted and possibly reversed
|
||||||
|
* @param lo index of the first element in the run
|
||||||
|
* @param hi index after the last element that may be contained in the run.
|
||||||
|
* It is required that {@code lo < hi}.
|
||||||
|
* @param c the comparator to used for the sort
|
||||||
|
* @return the length of the run beginning at the specified position in
|
||||||
|
* the specified array
|
||||||
|
*/
|
||||||
|
private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
|
||||||
|
Comparator<? super T> c) {
|
||||||
|
assert lo < hi;
|
||||||
|
int runHi = lo + 1;
|
||||||
|
if (runHi == hi)
|
||||||
|
return 1;
|
||||||
|
|
||||||
|
// Find end of run, and reverse range if descending
|
||||||
|
if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
|
||||||
|
while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
|
||||||
|
runHi++;
|
||||||
|
reverseRange(a, lo, runHi);
|
||||||
|
} else { // Ascending
|
||||||
|
while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
|
||||||
|
runHi++;
|
||||||
|
}
|
||||||
|
|
||||||
|
return runHi - lo;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Reverse the specified range of the specified array.
|
||||||
|
*
|
||||||
|
* @param a the array in which a range is to be reversed
|
||||||
|
* @param lo the index of the first element in the range to be reversed
|
||||||
|
* @param hi the index after the last element in the range to be reversed
|
||||||
|
*/
|
||||||
|
private static void reverseRange(Object[] a, int lo, int hi) {
|
||||||
|
hi--;
|
||||||
|
while (lo < hi) {
|
||||||
|
Object t = a[lo];
|
||||||
|
a[lo++] = a[hi];
|
||||||
|
a[hi--] = t;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the minimum acceptable run length for an array of the specified
|
||||||
|
* length. Natural runs shorter than this will be extended with
|
||||||
|
* {@link #binarySort}.
|
||||||
|
*
|
||||||
|
* Roughly speaking, the computation is:
|
||||||
|
*
|
||||||
|
* If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
|
||||||
|
* Else if n is an exact power of 2, return MIN_MERGE/2.
|
||||||
|
* Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
|
||||||
|
* is close to, but strictly less than, an exact power of 2.
|
||||||
|
*
|
||||||
|
* For the rationale, see listsort.txt.
|
||||||
|
*
|
||||||
|
* @param n the length of the array to be sorted
|
||||||
|
* @return the length of the minimum run to be merged
|
||||||
|
*/
|
||||||
|
private static int minRunLength(int n) {
|
||||||
|
assert n >= 0;
|
||||||
|
int r = 0; // Becomes 1 if any 1 bits are shifted off
|
||||||
|
while (n >= MIN_MERGE) {
|
||||||
|
r |= (n & 1);
|
||||||
|
n >>= 1;
|
||||||
|
}
|
||||||
|
return n + r;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Pushes the specified run onto the pending-run stack.
|
||||||
|
*
|
||||||
|
* @param runBase index of the first element in the run
|
||||||
|
* @param runLen the number of elements in the run
|
||||||
|
*/
|
||||||
|
private void pushRun(int runBase, int runLen) {
|
||||||
|
this.runBase[stackSize] = runBase;
|
||||||
|
this.runLen[stackSize] = runLen;
|
||||||
|
stackSize++;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Examines the stack of runs waiting to be merged and merges adjacent runs
|
||||||
|
* until the stack invariants are reestablished:
|
||||||
|
*
|
||||||
|
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
|
||||||
|
* 2. runLen[i - 2] > runLen[i - 1]
|
||||||
|
*
|
||||||
|
* This method is called each time a new run is pushed onto the stack,
|
||||||
|
* so the invariants are guaranteed to hold for i < stackSize upon
|
||||||
|
* entry to the method.
|
||||||
|
*
|
||||||
|
* Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
|
||||||
|
* Richard Bubel and Reiner Hahnle, this is fixed with respect to
|
||||||
|
* the analysis in "On the Worst-Case Complexity of TimSort" by
|
||||||
|
* Nicolas Auger, Vincent Jug, Cyril Nicaud, and Carine Pivoteau.
|
||||||
|
*/
|
||||||
|
private void mergeCollapse() {
|
||||||
|
while (stackSize > 1) {
|
||||||
|
int n = stackSize - 2;
|
||||||
|
if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
|
||||||
|
n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
|
||||||
|
if (runLen[n - 1] < runLen[n + 1])
|
||||||
|
n--;
|
||||||
|
} else if (n < 0 || runLen[n] > runLen[n + 1]) {
|
||||||
|
break; // Invariant is established
|
||||||
|
}
|
||||||
|
mergeAt(n);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Merges all runs on the stack until only one remains. This method is
|
||||||
|
* called once, to complete the sort.
|
||||||
|
*/
|
||||||
|
private void mergeForceCollapse() {
|
||||||
|
while (stackSize > 1) {
|
||||||
|
int n = stackSize - 2;
|
||||||
|
if (n > 0 && runLen[n - 1] < runLen[n + 1])
|
||||||
|
n--;
|
||||||
|
mergeAt(n);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Merges the two runs at stack indices i and i+1. Run i must be
|
||||||
|
* the penultimate or antepenultimate run on the stack. In other words,
|
||||||
|
* i must be equal to stackSize-2 or stackSize-3.
|
||||||
|
*
|
||||||
|
* @param i stack index of the first of the two runs to merge
|
||||||
|
*/
|
||||||
|
private void mergeAt(int i) {
|
||||||
|
assert stackSize >= 2;
|
||||||
|
assert i >= 0;
|
||||||
|
assert i == stackSize - 2 || i == stackSize - 3;
|
||||||
|
|
||||||
|
int base1 = runBase[i];
|
||||||
|
int len1 = runLen[i];
|
||||||
|
int base2 = runBase[i + 1];
|
||||||
|
int len2 = runLen[i + 1];
|
||||||
|
assert len1 > 0 && len2 > 0;
|
||||||
|
assert base1 + len1 == base2;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Record the length of the combined runs; if i is the 3rd-last
|
||||||
|
* run now, also slide over the last run (which isn't involved
|
||||||
|
* in this merge). The current run (i+1) goes away in any case.
|
||||||
|
*/
|
||||||
|
runLen[i] = len1 + len2;
|
||||||
|
if (i == stackSize - 3) {
|
||||||
|
runBase[i + 1] = runBase[i + 2];
|
||||||
|
runLen[i + 1] = runLen[i + 2];
|
||||||
|
}
|
||||||
|
stackSize--;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Find where the first element of run2 goes in run1. Prior elements
|
||||||
|
* in run1 can be ignored (because they're already in place).
|
||||||
|
*/
|
||||||
|
int k = gallopRight(a[base2], a, base1, len1, 0, c);
|
||||||
|
assert k >= 0;
|
||||||
|
base1 += k;
|
||||||
|
len1 -= k;
|
||||||
|
if (len1 == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Find where the last element of run1 goes in run2. Subsequent elements
|
||||||
|
* in run2 can be ignored (because they're already in place).
|
||||||
|
*/
|
||||||
|
len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
|
||||||
|
assert len2 >= 0;
|
||||||
|
if (len2 == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
// Merge remaining runs, using tmp array with min(len1, len2) elements
|
||||||
|
if (len1 <= len2)
|
||||||
|
mergeLo(base1, len1, base2, len2);
|
||||||
|
else
|
||||||
|
mergeHi(base1, len1, base2, len2);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Locates the position at which to insert the specified key into the
|
||||||
|
* specified sorted range; if the range contains an element equal to key,
|
||||||
|
* returns the index of the leftmost equal element.
|
||||||
|
*
|
||||||
|
* @param key the key whose insertion point to search for
|
||||||
|
* @param a the array in which to search
|
||||||
|
* @param base the index of the first element in the range
|
||||||
|
* @param len the length of the range; must be > 0
|
||||||
|
* @param hint the index at which to begin the search, 0 <= hint < n.
|
||||||
|
* The closer hint is to the result, the faster this method will run.
|
||||||
|
* @param c the comparator used to order the range, and to search
|
||||||
|
* @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
|
||||||
|
* pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
|
||||||
|
* In other words, key belongs at index b + k; or in other words,
|
||||||
|
* the first k elements of a should precede key, and the last n - k
|
||||||
|
* should follow it.
|
||||||
|
*/
|
||||||
|
private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
|
||||||
|
Comparator<? super T> c) {
|
||||||
|
assert len > 0 && hint >= 0 && hint < len;
|
||||||
|
int lastOfs = 0;
|
||||||
|
int ofs = 1;
|
||||||
|
if (c.compare(key, a[base + hint]) > 0) {
|
||||||
|
// Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
|
||||||
|
int maxOfs = len - hint;
|
||||||
|
while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
|
||||||
|
lastOfs = ofs;
|
||||||
|
ofs = (ofs << 1) + 1;
|
||||||
|
if (ofs <= 0) // int overflow
|
||||||
|
ofs = maxOfs;
|
||||||
|
}
|
||||||
|
if (ofs > maxOfs)
|
||||||
|
ofs = maxOfs;
|
||||||
|
|
||||||
|
// Make offsets relative to base
|
||||||
|
lastOfs += hint;
|
||||||
|
ofs += hint;
|
||||||
|
} else { // key <= a[base + hint]
|
||||||
|
// Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
|
||||||
|
final int maxOfs = hint + 1;
|
||||||
|
while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
|
||||||
|
lastOfs = ofs;
|
||||||
|
ofs = (ofs << 1) + 1;
|
||||||
|
if (ofs <= 0) // int overflow
|
||||||
|
ofs = maxOfs;
|
||||||
|
}
|
||||||
|
if (ofs > maxOfs)
|
||||||
|
ofs = maxOfs;
|
||||||
|
|
||||||
|
// Make offsets relative to base
|
||||||
|
int tmp = lastOfs;
|
||||||
|
lastOfs = hint - ofs;
|
||||||
|
ofs = hint - tmp;
|
||||||
|
}
|
||||||
|
assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
|
||||||
|
* to the right of lastOfs but no farther right than ofs. Do a binary
|
||||||
|
* search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
|
||||||
|
*/
|
||||||
|
lastOfs++;
|
||||||
|
while (lastOfs < ofs) {
|
||||||
|
int m = lastOfs + ((ofs - lastOfs) >>> 1);
|
||||||
|
|
||||||
|
if (c.compare(key, a[base + m]) > 0)
|
||||||
|
lastOfs = m + 1; // a[base + m] < key
|
||||||
|
else
|
||||||
|
ofs = m; // key <= a[base + m]
|
||||||
|
}
|
||||||
|
assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
|
||||||
|
return ofs;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Like gallopLeft, except that if the range contains an element equal to
|
||||||
|
* key, gallopRight returns the index after the rightmost equal element.
|
||||||
|
*
|
||||||
|
* @param key the key whose insertion point to search for
|
||||||
|
* @param a the array in which to search
|
||||||
|
* @param base the index of the first element in the range
|
||||||
|
* @param len the length of the range; must be > 0
|
||||||
|
* @param hint the index at which to begin the search, 0 <= hint < n.
|
||||||
|
* The closer hint is to the result, the faster this method will run.
|
||||||
|
* @param c the comparator used to order the range, and to search
|
||||||
|
* @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
|
||||||
|
*/
|
||||||
|
private static <T> int gallopRight(T key, T[] a, int base, int len,
|
||||||
|
int hint, Comparator<? super T> c) {
|
||||||
|
assert len > 0 && hint >= 0 && hint < len;
|
||||||
|
|
||||||
|
int ofs = 1;
|
||||||
|
int lastOfs = 0;
|
||||||
|
if (c.compare(key, a[base + hint]) < 0) {
|
||||||
|
// Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
|
||||||
|
int maxOfs = hint + 1;
|
||||||
|
while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
|
||||||
|
lastOfs = ofs;
|
||||||
|
ofs = (ofs << 1) + 1;
|
||||||
|
if (ofs <= 0) // int overflow
|
||||||
|
ofs = maxOfs;
|
||||||
|
}
|
||||||
|
if (ofs > maxOfs)
|
||||||
|
ofs = maxOfs;
|
||||||
|
|
||||||
|
// Make offsets relative to b
|
||||||
|
int tmp = lastOfs;
|
||||||
|
lastOfs = hint - ofs;
|
||||||
|
ofs = hint - tmp;
|
||||||
|
} else { // a[b + hint] <= key
|
||||||
|
// Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
|
||||||
|
int maxOfs = len - hint;
|
||||||
|
while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
|
||||||
|
lastOfs = ofs;
|
||||||
|
ofs = (ofs << 1) + 1;
|
||||||
|
if (ofs <= 0) // int overflow
|
||||||
|
ofs = maxOfs;
|
||||||
|
}
|
||||||
|
if (ofs > maxOfs)
|
||||||
|
ofs = maxOfs;
|
||||||
|
|
||||||
|
// Make offsets relative to b
|
||||||
|
lastOfs += hint;
|
||||||
|
ofs += hint;
|
||||||
|
}
|
||||||
|
assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
|
||||||
|
* the right of lastOfs but no farther right than ofs. Do a binary
|
||||||
|
* search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
|
||||||
|
*/
|
||||||
|
lastOfs++;
|
||||||
|
while (lastOfs < ofs) {
|
||||||
|
int m = lastOfs + ((ofs - lastOfs) >>> 1);
|
||||||
|
|
||||||
|
if (c.compare(key, a[base + m]) < 0)
|
||||||
|
ofs = m; // key < a[b + m]
|
||||||
|
else
|
||||||
|
lastOfs = m + 1; // a[b + m] <= key
|
||||||
|
}
|
||||||
|
assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
|
||||||
|
return ofs;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Merges two adjacent runs in place, in a stable fashion. The first
|
||||||
|
* element of the first run must be greater than the first element of the
|
||||||
|
* second run (a[base1] > a[base2]), and the last element of the first run
|
||||||
|
* (a[base1 + len1-1]) must be greater than all elements of the second run.
|
||||||
|
*
|
||||||
|
* For performance, this method should be called only when len1 <= len2;
|
||||||
|
* its twin, mergeHi should be called if len1 >= len2. (Either method
|
||||||
|
* may be called if len1 == len2.)
|
||||||
|
*
|
||||||
|
* @param base1 index of first element in first run to be merged
|
||||||
|
* @param len1 length of first run to be merged (must be > 0)
|
||||||
|
* @param base2 index of first element in second run to be merged
|
||||||
|
* (must be aBase + aLen)
|
||||||
|
* @param len2 length of second run to be merged (must be > 0)
|
||||||
|
*/
|
||||||
|
private void mergeLo(int base1, int len1, int base2, int len2) {
|
||||||
|
assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
|
||||||
|
|
||||||
|
// Copy first run into temp array
|
||||||
|
T[] a = this.a; // For performance
|
||||||
|
T[] tmp = ensureCapacity(len1);
|
||||||
|
int cursor1 = tmpBase; // Indexes into tmp array
|
||||||
|
int cursor2 = base2; // Indexes int a
|
||||||
|
int dest = base1; // Indexes int a
|
||||||
|
System.arraycopy(a, base1, tmp, cursor1, len1);
|
||||||
|
|
||||||
|
// Move first element of second run and deal with degenerate cases
|
||||||
|
a[dest++] = a[cursor2++];
|
||||||
|
if (--len2 == 0) {
|
||||||
|
System.arraycopy(tmp, cursor1, a, dest, len1);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (len1 == 1) {
|
||||||
|
System.arraycopy(a, cursor2, a, dest, len2);
|
||||||
|
a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
Comparator<? super T> c = this.c; // Use local variable for performance
|
||||||
|
int minGallop = this.minGallop; // " " " " "
|
||||||
|
outer:
|
||||||
|
while (true) {
|
||||||
|
int count1 = 0; // Number of times in a row that first run won
|
||||||
|
int count2 = 0; // Number of times in a row that second run won
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Do the straightforward thing until (if ever) one run starts
|
||||||
|
* winning consistently.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
assert len1 > 1 && len2 > 0;
|
||||||
|
if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
|
||||||
|
a[dest++] = a[cursor2++];
|
||||||
|
count2++;
|
||||||
|
count1 = 0;
|
||||||
|
if (--len2 == 0)
|
||||||
|
break outer;
|
||||||
|
} else {
|
||||||
|
a[dest++] = tmp[cursor1++];
|
||||||
|
count1++;
|
||||||
|
count2 = 0;
|
||||||
|
if (--len1 == 1)
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
} while ((count1 | count2) < minGallop);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* One run is winning so consistently that galloping may be a
|
||||||
|
* huge win. So try that, and continue galloping until (if ever)
|
||||||
|
* neither run appears to be winning consistently anymore.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
assert len1 > 1 && len2 > 0;
|
||||||
|
count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
|
||||||
|
if (count1 != 0) {
|
||||||
|
System.arraycopy(tmp, cursor1, a, dest, count1);
|
||||||
|
dest += count1;
|
||||||
|
cursor1 += count1;
|
||||||
|
len1 -= count1;
|
||||||
|
if (len1 <= 1) // len1 == 1 || len1 == 0
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
a[dest++] = a[cursor2++];
|
||||||
|
if (--len2 == 0)
|
||||||
|
break outer;
|
||||||
|
|
||||||
|
count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
|
||||||
|
if (count2 != 0) {
|
||||||
|
System.arraycopy(a, cursor2, a, dest, count2);
|
||||||
|
dest += count2;
|
||||||
|
cursor2 += count2;
|
||||||
|
len2 -= count2;
|
||||||
|
if (len2 == 0)
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
a[dest++] = tmp[cursor1++];
|
||||||
|
if (--len1 == 1)
|
||||||
|
break outer;
|
||||||
|
minGallop--;
|
||||||
|
} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
|
||||||
|
if (minGallop < 0)
|
||||||
|
minGallop = 0;
|
||||||
|
minGallop += 2; // Penalize for leaving gallop mode
|
||||||
|
} // End of "outer" loop
|
||||||
|
this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
|
||||||
|
|
||||||
|
if (len1 == 1) {
|
||||||
|
assert len2 > 0;
|
||||||
|
System.arraycopy(a, cursor2, a, dest, len2);
|
||||||
|
a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
|
||||||
|
} else if (len1 == 0) {
|
||||||
|
throw new IllegalArgumentException(
|
||||||
|
"Comparison method violates its general contract!");
|
||||||
|
} else {
|
||||||
|
assert len2 == 0;
|
||||||
|
assert len1 > 1;
|
||||||
|
System.arraycopy(tmp, cursor1, a, dest, len1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Like mergeLo, except that this method should be called only if
|
||||||
|
* len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
|
||||||
|
* may be called if len1 == len2.)
|
||||||
|
*
|
||||||
|
* @param base1 index of first element in first run to be merged
|
||||||
|
* @param len1 length of first run to be merged (must be > 0)
|
||||||
|
* @param base2 index of first element in second run to be merged
|
||||||
|
* (must be aBase + aLen)
|
||||||
|
* @param len2 length of second run to be merged (must be > 0)
|
||||||
|
*/
|
||||||
|
private void mergeHi(int base1, int len1, int base2, int len2) {
|
||||||
|
assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
|
||||||
|
|
||||||
|
// Copy second run into temp array
|
||||||
|
T[] a = this.a; // For performance
|
||||||
|
T[] tmp = ensureCapacity(len2);
|
||||||
|
int tmpBase = this.tmpBase;
|
||||||
|
System.arraycopy(a, base2, tmp, tmpBase, len2);
|
||||||
|
|
||||||
|
int cursor1 = base1 + len1 - 1; // Indexes into a
|
||||||
|
int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
|
||||||
|
int dest = base2 + len2 - 1; // Indexes into a
|
||||||
|
|
||||||
|
// Move last element of first run and deal with degenerate cases
|
||||||
|
a[dest--] = a[cursor1--];
|
||||||
|
if (--len1 == 0) {
|
||||||
|
System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (len2 == 1) {
|
||||||
|
dest -= len1;
|
||||||
|
cursor1 -= len1;
|
||||||
|
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
|
||||||
|
a[dest] = tmp[cursor2];
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
Comparator<? super T> c = this.c; // Use local variable for performance
|
||||||
|
int minGallop = this.minGallop; // " " " " "
|
||||||
|
outer:
|
||||||
|
while (true) {
|
||||||
|
int count1 = 0; // Number of times in a row that first run won
|
||||||
|
int count2 = 0; // Number of times in a row that second run won
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Do the straightforward thing until (if ever) one run
|
||||||
|
* appears to win consistently.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
assert len1 > 0 && len2 > 1;
|
||||||
|
if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
|
||||||
|
a[dest--] = a[cursor1--];
|
||||||
|
count1++;
|
||||||
|
count2 = 0;
|
||||||
|
if (--len1 == 0)
|
||||||
|
break outer;
|
||||||
|
} else {
|
||||||
|
a[dest--] = tmp[cursor2--];
|
||||||
|
count2++;
|
||||||
|
count1 = 0;
|
||||||
|
if (--len2 == 1)
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
} while ((count1 | count2) < minGallop);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* One run is winning so consistently that galloping may be a
|
||||||
|
* huge win. So try that, and continue galloping until (if ever)
|
||||||
|
* neither run appears to be winning consistently anymore.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
assert len1 > 0 && len2 > 1;
|
||||||
|
count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
|
||||||
|
if (count1 != 0) {
|
||||||
|
dest -= count1;
|
||||||
|
cursor1 -= count1;
|
||||||
|
len1 -= count1;
|
||||||
|
System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
|
||||||
|
if (len1 == 0)
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
a[dest--] = tmp[cursor2--];
|
||||||
|
if (--len2 == 1)
|
||||||
|
break outer;
|
||||||
|
|
||||||
|
count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
|
||||||
|
if (count2 != 0) {
|
||||||
|
dest -= count2;
|
||||||
|
cursor2 -= count2;
|
||||||
|
len2 -= count2;
|
||||||
|
System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
|
||||||
|
if (len2 <= 1) // len2 == 1 || len2 == 0
|
||||||
|
break outer;
|
||||||
|
}
|
||||||
|
a[dest--] = a[cursor1--];
|
||||||
|
if (--len1 == 0)
|
||||||
|
break outer;
|
||||||
|
minGallop--;
|
||||||
|
} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
|
||||||
|
if (minGallop < 0)
|
||||||
|
minGallop = 0;
|
||||||
|
minGallop += 2; // Penalize for leaving gallop mode
|
||||||
|
} // End of "outer" loop
|
||||||
|
this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
|
||||||
|
|
||||||
|
if (len2 == 1) {
|
||||||
|
assert len1 > 0;
|
||||||
|
dest -= len1;
|
||||||
|
cursor1 -= len1;
|
||||||
|
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
|
||||||
|
a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
|
||||||
|
} else if (len2 == 0) {
|
||||||
|
throw new IllegalArgumentException(
|
||||||
|
"Comparison method violates its general contract!");
|
||||||
|
} else {
|
||||||
|
assert len1 == 0;
|
||||||
|
assert len2 > 0;
|
||||||
|
System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ensures that the external array tmp has at least the specified
|
||||||
|
* number of elements, increasing its size if necessary. The size
|
||||||
|
* increases exponentially to ensure amortized linear time complexity.
|
||||||
|
*
|
||||||
|
* @param minCapacity the minimum required capacity of the tmp array
|
||||||
|
* @return tmp, whether or not it grew
|
||||||
|
*/
|
||||||
|
private T[] ensureCapacity(int minCapacity) {
|
||||||
|
if (tmpLen < minCapacity) {
|
||||||
|
// Compute smallest power of 2 > minCapacity
|
||||||
|
int newSize = -1 >>> Integer.numberOfLeadingZeros(minCapacity);
|
||||||
|
newSize++;
|
||||||
|
|
||||||
|
if (newSize < 0) // Not bloody likely!
|
||||||
|
newSize = minCapacity;
|
||||||
|
else
|
||||||
|
newSize = Math.min(newSize, a.length >>> 1);
|
||||||
|
|
||||||
|
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
|
||||||
|
T[] newArray = (T[])java.lang.reflect.Array.newInstance
|
||||||
|
(a.getClass().getComponentType(), newSize);
|
||||||
|
tmp = newArray;
|
||||||
|
tmpLen = newSize;
|
||||||
|
tmpBase = 0;
|
||||||
|
}
|
||||||
|
return tmp;
|
||||||
|
}
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user