Merge remote-tracking branch 'origin/main'

This commit is contained in:
finnm 2025-02-01 18:07:59 +01:00
commit 8a08e65ae9
20 changed files with 2723 additions and 910 deletions

View File

@ -10,3 +10,16 @@ java:
when: always
reports:
junit: app/build/test-results/test/**/TEST-*.xml
expire_in: 6 month
jmh:
image: alpine:latest
stage: test
script:
- apk --no-cache add openjdk23 gradle --repository=https://dl-cdn.alpinelinux.org/alpine/edge/testing/
- gradle jmh --no-daemon
# https://docs.gitlab.com/ee/ci/jobs/job_artifacts.html
artifacts:
paths:
- app/build/reports/jmh/*
expire_in: 6 month

View File

@ -118,7 +118,7 @@ Run Custom Benchmark (CGM) with
#### Run JMH with CGL and Powersort competition lists
```shell
./gradlew jmh
./gradlew jmh --rerun
```
- To benchmark only one of the different list collections, see `jmh { excludes }` at the bottom of [./app/build.gradle.kts](./app/build.gradle.kts).

View File

@ -97,9 +97,9 @@ jmh {
forceGC = true
// If human output is saved, it won't be written to stdout while running the benchmark!
//humanOutputFile = project.file("${project.layout.buildDirectory.get()}/reports/jmh/human.txt")
humanOutputFile = project.file("${project.layout.buildDirectory.get()}/reports/jmh/human.txt")
resultsFile = project.file("${project.layout.buildDirectory.get()}/reports/jmh/results.txt")
resultsFile = project.file("${project.layout.buildDirectory.get()}/reports/jmh/results.csv")
resultFormat = "CSV"
excludes = listOf(

View File

@ -34,7 +34,7 @@ import java.util.concurrent.TimeUnit;
// AverageTime: "Average time per operation."
// - "This mode is time-based, and it will run until the iteration time expires."
//@BenchmarkMode(Mode.AverageTime)
//@Warmup(iterations = 6, time = 1, timeUnit = TimeUnit.SECONDS)
//@Warmup(iterations = 20, time = 1, timeUnit = TimeUnit.SECONDS)
//@Measurement(iterations = 6, time = 1, timeUnit = TimeUnit.SECONDS)
// SingleShotTime: "Time per single operation"
@ -45,7 +45,7 @@ import java.util.concurrent.TimeUnit;
// - Until the 17th spike of up to +750% (Maybe JVM optimizations happening?)
// - After 40th constant slowdown of around +10% (Maybe CPU frequency adjustments?)
// Thus, we need at least ~50 warmup iterations!
@Warmup(iterations = 50)
@Warmup(iterations = 60)
@Measurement(iterations = 6)
/*

View File

@ -17,13 +17,22 @@ import org.openjdk.jmh.annotations.State;
@State(Scope.Benchmark)
public class JmhCgl extends JmhBase {
// Either all or a selection of input lists.
@Param()
//@Param({"ASCENDING_RUNS", "ASCENDING_RUNS_WITH_OVERLAP", "MANY_ASCENDING_RUNS", "MANY_ASCENDING_RUNS_WITH_OVERLAP"})
//@Param()
@Param({
//"RANDOM_INTEGERS",
"ASCENDING_RUNS", "ASCENDING_RUNS_WITH_OVERLAP",
"MANY_ASCENDING_RUNS", "MANY_ASCENDING_RUNS_WITH_OVERLAP"
})
CglEnum dataEnum;
// Either all or a selection of sort implementations.
//@Param()
@Param({"TIM_SORT", "FASTER_FINN_SORT", "IMPL_M_11", "IMPL_M_21"})
@Param({
"TIM_SORT",
"FASTER_FINN_SORT",
//"IMPL_M_40",
"IMPL_M_50",
})
SortEnum sortEnum;
@Override
@ -42,4 +51,4 @@ public class JmhCgl extends JmhBase {
public void benchmark() {
sortImpl.sort(workingCopy);
}
}
}

View File

@ -16,9 +16,18 @@ import org.openjdk.jmh.annotations.State;
*/
@State(Scope.Benchmark)
public class JmhCompetition extends JmhBase {
@Param()
//@Param()
@Param({
// Top 4 Heavyweight by #comparisons
"COMPETITION_207", "COMPETITION_214", "COMPETITION_213", "COMPETITION_236",
// Top 4 Heavyweight by #merge-cost
"COMPETITION_198","COMPETITION_199","COMPETITION_232","COMPETITION_231",
// Top 4 Heavyweight by combined metric
"COMPETITION_214","COMPETITION_218","COMPETITION_236","COMPETITION_213",
})
CompetitionEnum dataEnum;
@Param()
//@Param()
@Param({"TIM_SORT", "FASTER_FINN_SORT", "IMPL_M_40"})
SortEnum sortEnum;
@Override

View File

@ -172,7 +172,7 @@ public class FasterFinnSort<T> {
}
// TODO: Verify if this is correct
int stackLen = ((int) Math.ceil(Math.log(rangeSize))) + 2;
int stackLen = ((int) Math.ceil(Math.log(rangeSize) / Math.log(2))) + 2;
runBase = new int[stackLen];
runLen = new int[stackLen];
runPower = new int[stackLen];

View File

@ -111,7 +111,7 @@ public class IMPL_M_1 {
}
static <T> void mergeInplace(T[] a, int i, int m, int j, Comparator<? super T> c) {
System.out.printf("Merge(%d, %d, %d)%n", i, m, j);
// System.out.printf("Merge(%d, %d, %d)%n", i, m, j);
MERGE_COST += j - i;
// Create temporary arrays for merging
@SuppressWarnings("unchecked")
@ -131,7 +131,6 @@ public class IMPL_M_1 {
System.arraycopy(merged, 0, a, i,merged.length);
}
static <T> int extendRun(T [] a, int i, Comparator<? super T> c) {
// if i was the element before end so just return the last element
if (i == a.length - 1) {

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,178 @@
package de.uni_marburg.powersort.MSort;
import java.util.Arrays;
import java.util.Comparator;
public class IMPL_M_3 {
private static final int MIN_MERGE = 32;
private static final int MIN_GALLOP = 7;
private IMPL_M_3() {
}
public static void fillWithAscRunsHighToLow(Integer[] A, int[] runLengths, int runLenFactor) {
int n = A.length;
assert Arrays.stream(runLengths).sum() * runLenFactor == n;
for (int i = 0; i < n; i++) {
A[i] = n - i;
}
int startIndex = 0;
for (int l : runLengths) {
int L = l * runLenFactor;
Arrays.sort(A, startIndex, startIndex + L);
startIndex += L;
}
}
private static <T> int extendRun(T[] a, int i, Comparator<? super T> c) {
if (i >= a.length - 1) {
return a.length; // Return the end of the array
}
int j = i + 1;
boolean ascending = c.compare(a[i], a[j]) <= 0;
while (j < a.length && c.compare(a[j - 1], a[j]) == (ascending ? -1 : 1)) {
j++;
}
if (!ascending) {
reverseRange(a, i, j);
}
return j;
}
private static <T> void reverseRange(T[] a, int start, int end) {
end--;
while (start < end) {
T temp = a[start];
a[start++] = a[end];
a[end--] = temp;
}
}
private static <T> void mergeInplace(T[] a, int i, int m, int j, Comparator<? super T> c, T[] temp) {
int leftSize = m - i;
int rightSize = j - m;
// Validate indices
if (leftSize < 0 || rightSize < 0) {
throw new IllegalArgumentException("Invalid indices: leftSize=" + leftSize + ", rightSize=" + rightSize);
}
if (leftSize < 0) {
throw new IllegalArgumentException("Invalid indices: leftSize is negative");
}
// Ensure the temporary array is large enough
if (temp.length < leftSize) {
temp = Arrays.copyOf(temp, leftSize);
}
System.arraycopy(a, i, temp, 0, leftSize);
int li = 0, ri = m, k = i;
int gallopCount = 0;
while (li < leftSize && ri < j) {
if (c.compare(temp[li], a[ri]) <= 0) {
a[k++] = temp[li++];
gallopCount++;
} else {
a[k++] = a[ri++];
gallopCount = 0;
}
if (gallopCount >= MIN_GALLOP) {
gallopCount = 0;
while (li < leftSize && ri < j) {
if (c.compare(temp[li], a[ri]) <= 0) {
a[k++] = temp[li++];
} else {
a[k++] = a[ri++];
}
}
break;
}
}
while (li < leftSize) a[k++] = temp[li++];
while (ri < j) a[k++] = a[ri++];
}
public static <T> void powerSort(T[] a, Comparator<? super T> c) {
int n = a.length;
if (n < MIN_MERGE) {
Arrays.sort(a, c);
return;
}
// Initialize temporary array with a reasonable size
T[] temp = (T[]) new Object[Math.min(n, MIN_MERGE)];
int[] runStack = new int[40];
int stackSize = 0;
int i = 0;
while (i < n) {
int j = extendRun(a, i, c);
// Ensure j > i
if (j <= i) {
throw new IllegalStateException("Invalid run: j <= i, i=" + i + ", j=" + j);
}
int[] newRun = new int[]{i, j - i};
// Validate new run
if (newRun[0] >= newRun[1]) {
throw new IllegalArgumentException("Invalid run: start index >= length, i=" + i + ", j=" + j);
}
i = j;
if (stackSize > 0) {
int[] prevRun = new int[]{runStack[stackSize - 2], runStack[stackSize - 1]};
int p = power(prevRun, newRun, n);
while (stackSize > 0 && p <= runStack[stackSize - 1]) {
mergeInplace(a, runStack[stackSize - 2], runStack[stackSize - 1], i, c, temp);
stackSize -= 2;
}
}
runStack[stackSize++] = newRun[0];
runStack[stackSize++] = newRun[1];
}
while (stackSize > 2) {
mergeInplace(a, runStack[stackSize - 4], runStack[stackSize - 3], n, c, temp);
stackSize -= 2;
}
}
private static int power(int[] run1, int[] run2, int n) {
int i1 = run1[0], n1 = run1[1];
int i2 = run2[0], n2 = run2[1];
int a = 2 * i1 + n1;
int b = a + n1 + n2;
int l = 0;
while (true) {
l++;
if (a >= n) {
a -= n;
b -= n;
} else if (b >= n) {
break;
}
a <<= 1;
b <<= 1;
}
return l;
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,996 @@
package de.uni_marburg.powersort.MSort;
import java.util.Comparator;
/*
* Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2009 Google Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* Imported from OpenJDK git repo TimSort.java
*/
/**
* A stable, adaptive, iterative mergesort that requires far fewer than
* n lg(n) comparisons when running on partially sorted arrays, while
* offering performance comparable to a traditional mergesort when run
* on random arrays. Like all proper mergesorts, this sort is stable and
* runs O(n log n) time (worst case). In the worst case, this sort requires
* temporary storage space for n/2 object references; in the best case,
* it requires only a small constant amount of space.
*
* This implementation was adapted from Tim Peters's list sort for
* Python, which is described in detail here:
*
* http://svn.python.org/projects/python/trunk/Objects/listsort.txt
*
* Tim's C code may be found here:
*
* http://svn.python.org/projects/python/trunk/Objects/listobject.c
*
* The underlying techniques are described in this paper (and may have
* even earlier origins):
*
* "Optimistic Sorting and Information Theoretic Complexity"
* Peter McIlroy
* SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
* pp 467-474, Austin, Texas, 25-27 January 1993.
*
* While the API to this class consists solely of static methods, it is
* (privately) instantiable; a TimSort instance holds the state of an ongoing
* sort, assuming the input array is large enough to warrant the full-blown
* TimSort. Small arrays are sorted in place, using a binary insertion sort.
*
* @author Josh Bloch
*/
public class IMPL_M_5<T> {
/**
* This is the minimum sized sequence that will be merged. Shorter
* sequences will be lengthened by calling binarySort. If the entire
* array is less than this length, no merges will be performed.
*
* This constant should be a power of two. It was 64 in Tim Peter's C
* implementation, but 32 was empirically determined to work better in
* this implementation. In the unlikely event that you set this constant
* to be a number that's not a power of two, you'll need to change the
* {@link #minRunLength} computation.
*
* If you decrease this constant, you must change the stackLen
* computation in the TimSort constructor, or you risk an
* ArrayOutOfBounds exception. See listsort.txt for a discussion
* of the minimum stack length required as a function of the length
* of the array being sorted and the minimum merge sequence length.
*/
private static final int MIN_MERGE = 31;
/**
* The array being sorted.
*/
private final T[] a;
/**
* The comparator for this sort.
*/
private final Comparator<? super T> c;
/**
* When we get into galloping mode, we stay there until both runs win less
* often than MIN_GALLOP consecutive times.
*/
private static final int MIN_GALLOP = 7;
/**
* This controls when we get *into* galloping mode. It is initialized
* to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
* random data, and lower for highly structured data.
*/
private int minGallop = MIN_GALLOP;
/**
* Maximum initial size of tmp array, which is used for merging. The array
* can grow to accommodate demand.
*
* Unlike Tim's original C version, we do not allocate this much storage
* when sorting smaller arrays. This change was required for performance.
*/
private static final int INITIAL_TMP_STORAGE_LENGTH = 255;
/**
* Temp storage for merges. A workspace array may optionally be
* provided in constructor, and if so will be used as long as it
* is big enough.
*/
private T[] tmp;
private int tmpBase; // base of tmp array slice
private int tmpLen; // length of tmp array slice
/**
* A stack of pending runs yet to be merged. Run i starts at
* address base[i] and extends for len[i] elements. It's always
* true (so long as the indices are in bounds) that:
*
* runBase[i] + runLen[i] == runBase[i + 1]
*
* so we could cut the storage for this, but it's a minor amount,
* and keeping all the info explicit simplifies the code.
*/
private int stackSize = 0; // Number of pending runs on stack
private final int[] runBase;
private final int[] runLen;
// Cache for binary search bounds
private final int[] searchBoundsCache;
/**
* Creates a TimSort instance to maintain the state of an ongoing sort.
*
* @param a the array to be sorted
* @param c the comparator to determine the order of the sort
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
*/
/**
MINE
**/
private final int[] runPower; // Added to track power of each run
private static final int PARALLEL_THRESHOLD = 1 << 16; // 65,536 elements
private IMPL_M_5(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) {
this.a = a;
this.c = c;
// Allocate temp storage (which may be increased later if necessary)
// Initialize temp storage with optimized initial size
int len = a.length;
int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
if (work == null || workLen < tlen || workBase + tlen > work.length) {
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
T[] newArray = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), tlen);
tmp = newArray;
tmpBase = 0;
tmpLen = tlen;
} else {
tmp = work;
tmpBase = workBase;
tmpLen = workLen;
}
/*
* Allocate runs-to-be-merged stack (which cannot be expanded). The
* stack length requirements are described in listsort.txt. The C
* version always uses the same stack length (85), but this was
* measured to be too expensive when sorting "mid-sized" arrays (e.g.,
* 100 elements) in Java. Therefore, we use smaller (but sufficiently
* large) stack lengths for smaller arrays. The "magic numbers" in the
* computation below must be changed if MIN_MERGE is decreased. See
* the MIN_MERGE declaration above for more information.
* The maximum value of 49 allows for an array up to length
* Integer.MAX_VALUE-4, if array is filled by the worst case stack size
* increasing scenario. More explanations are given in section 4 of:
* http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
*/
// Optimize stack size based on array length
int stackLen = (len < 120 ? 5 :
len < 1542 ? 10 :
len < 119151 ? 19 : 40);
runBase = new int[stackLen];
runLen = new int[stackLen];
runPower = new int[stackLen];
searchBoundsCache = new int[64]; // Cache for binary search
}
/*
* The next method (package private and static) constitutes the
* entire API of this class.
*/
/**
* Sorts the given range, using the given workspace array slice
* for temp storage when possible. This method is designed to be
* invoked from public methods (in class Arrays) after performing
* any necessary array bounds checks and expanding parameters into
* the required forms.
*
* @param a the array to be sorted
* @param lo the index of the first element, inclusive, to be sorted
* @param hi the index of the last element, exclusive, to be sorted
* @param c the comparator to use
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
* @since 1.8
*/
public static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
T[] work, int workBase, int workLen) {
if (hi - lo < 2) return;
IMPL_M_5<T> sorter = new IMPL_M_5<>(a, c, work, workBase, workLen);
sorter.sort(lo, hi);
}
public void sort(int low, int high) {
if (high - low < MIN_MERGE) {
binaryInsertionSort(a, low, high, c);
return;
}
int minRun = minRunLength(high - low);
int runStart = low;
while (runStart < high) {
int runLength = countRunAndMakeAscending(a, runStart, high, c);
if (runLength < minRun) {
int force = Math.min(high - runStart, minRun);
binaryInsertionSort(a, runStart, runStart + force, c);
runLength = force;
}
pushRun(runStart, runLength, stackSize);
mergeCollapse();
runStart += runLength;
}
mergeForceCollapse();
}
private static <T> void binaryInsertionSort(T[] a, int lo, int hi, Comparator<? super T> c) {
for (int i = lo + 1; i < hi; i++) {
T pivot = a[i];
int left = lo;
int right = i;
while (left < right) {
int mid = (left + right) >>> 1;
if (c.compare(pivot, a[mid]) < 0)
right = mid;
else
left = mid + 1;
}
System.arraycopy(a, left, a, left + 1, i - left);
a[left] = pivot;
}
}
/**
* Sorts the specified portion of the specified array using a binary
* insertion sort. This is the best method for sorting small numbers
* of elements. It requires O(n log n) compares, but O(n^2) data
* movement (worst case).
*
* If the initial part of the specified range is already sorted,
* this method can take advantage of it: the method assumes that the
* elements from index {@code lo}, inclusive, to {@code start},
* exclusive are already sorted.
*
* @param a the array in which a range is to be sorted
* @param lo the index of the first element in the range to be sorted
* @param hi the index after the last element in the range to be sorted
* @param start the index of the first element in the range that is
* not already known to be sorted ({@code lo <= start <= hi})
* @param c comparator to used for the sort
*/
@SuppressWarnings("fallthrough")
private static <T> void binarySort(T[] a, int lo, int hi, int start,
Comparator<? super T> c) {
assert lo <= start && start <= hi;
if (start == lo)
start++;
for ( ; start < hi; start++) {
T pivot = a[start];
// Set left (and right) to the index where a[start] (pivot) belongs
int left = lo;
int right = start;
assert left <= right;
/*
* Invariants:
* pivot >= all in [lo, left).
* pivot < all in [right, start).
*/
while (left < right) {
int mid = (left + right) >>> 1;
if (c.compare(pivot, a[mid]) < 0)
right = mid;
else
left = mid + 1;
}
assert left == right;
/*
* The invariants still hold: pivot >= all in [lo, left) and
* pivot < all in [left, start), so pivot belongs at left. Note
* that if there are elements equal to pivot, left points to the
* first slot after them -- that's why this sort is stable.
* Slide elements over to make room for pivot.
*/
int n = start - left; // The number of elements to move
// Switch is just an optimization for arraycopy in default case
switch (n) {
case 2: a[left + 2] = a[left + 1];
case 1: a[left + 1] = a[left];
break;
default: System.arraycopy(a, left, a, left + 1, n);
}
a[left] = pivot;
}
}
/**
* Returns the length of the run beginning at the specified position in
* the specified array and reverses the run if it is descending (ensuring
* that the run will always be ascending when the method returns).
*
* A run is the longest ascending sequence with:
*
* a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
*
* or the longest descending sequence with:
*
* a[lo] > a[lo + 1] > a[lo + 2] > ...
*
* For its intended use in a stable mergesort, the strictness of the
* definition of "descending" is needed so that the call can safely
* reverse a descending sequence without violating stability.
*
* @param a the array in which a run is to be counted and possibly reversed
* @param lo index of the first element in the run
* @param hi index after the last element that may be contained in the run.
* It is required that {@code lo < hi}.
* @param c the comparator to used for the sort
* @return the length of the run beginning at the specified position in
* the specified array
*/
private int countRunAndMakeAscending(T[] a, int lo, int hi, Comparator<? super T> c) {
int runHi = lo + 1;
if (runHi == hi) return 1;
if (c.compare(a[runHi++], a[lo]) < 0) {
while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
runHi++;
reverseRange(a, lo, runHi);
} else {
while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
runHi++;
}
return runHi - lo;
}
/**
* Reverse the specified range of the specified array.
*
* @param a the array in which a range is to be reversed
* @param lo the index of the first element in the range to be reversed
* @param hi the index after the last element in the range to be reversed
*/
private void reverseRange(T[] a, int lo, int hi) {
hi--;
while (lo < hi) {
T t = a[lo];
a[lo++] = a[hi];
a[hi--] = t;
}
}
/**
* Returns the minimum acceptable run length for an array of the specified
* length. Natural runs shorter than this will be extended with
* {@link #binarySort}.
*
* Roughly speaking, the computation is:
*
* If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return MIN_MERGE/2.
* Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
* is close to, but strictly less than, an exact power of 2.
*
* For the rationale, see listsort.txt.
*
* @param n the length of the array to be sorted
* @return the length of the minimum run to be merged
*/
private int minRunLength(int n) {
int r = 0;
while (n >= MIN_MERGE) {
r |= (n & 1);
n >>= 1;
}
return n + r;
}
/**
* Pushes the specified run onto the pending-run stack.
*
* @param runBase index of the first element in the run
* @param runLen the number of elements in the run
*/
private void pushRun(int runBase, int runLen, int stackPos) {
this.runBase[stackPos] = runBase;
this.runLen[stackPos] = runLen;
stackSize++;
}
private int computePower(int start1, int end1, int start2, int end2, int totalLength) {
if (totalLength == 0) return 0;
// Calculate normalized positions (0 to 1 range)
double mid1 = (start1 + (end1 - start1) / 2.0) / totalLength;
double mid2 = (start2 + (end2 - start2) / 2.0) / totalLength;
// Fast path for equal midpoints
if (Math.abs(mid1 - mid2) < 1e-10) {
return 64; // Maximum power for identical positions
}
// Count matching bits in binary representation
int power = 0;
double a = mid1;
double b = mid2;
while (Math.floor(a) == Math.floor(b) && power < 64) {
a = (a - Math.floor(a)) * 2;
b = (b - Math.floor(b)) * 2;
power++;
}
return power;
}
/**
* Examines the stack of runs waiting to be merged and merges adjacent runs
* until the stack invariants are reestablished:
*
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
* 2. runLen[i - 2] > runLen[i - 1]
*
* This method is called each time a new run is pushed onto the stack,
* so the invariants are guaranteed to hold for i < stackSize upon
* entry to the method.
*
* Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
* Richard Bubel and Reiner Hahnle, this is fixed with respect to
* the analysis in "On the Worst-Case Complexity of TimSort" by
* Nicolas Auger, Vincent Jug, Cyril Nicaud, and Carine Pivoteau.
*/
private void mergeCollapse() {
while (stackSize > 1) {
int n = stackSize - 2;
if (n > 0 && runLen[n - 1] <= runLen[n] + runLen[n + 1]) {
if (runLen[n - 1] < runLen[n + 1]) {
mergeAt(n - 1);
} else {
mergeAt(n);
}
} else if (runLen[n] <= runLen[n + 1]) {
mergeAt(n);
} else {
break;
}
}
}
/**
* Merges all runs on the stack until only one remains. This method is
* called once, to complete the sort.
*/
private void mergeForceCollapse() {
while (stackSize > 1) {
int n = stackSize - 2;
if (n > 0 && runLen[n - 1] < runLen[n + 1]) {
n--;
}
mergeAt(n);
}
}
/**
* Merges the two runs at stack indices i and i+1. Run i must be
* the penultimate or antepenultimate run on the stack. In other words,
* i must be equal to stackSize-2 or stackSize-3.
*
* @param i stack index of the first of the two runs to merge
*/
private void mergeAt(int i) {
assert stackSize >= 2;
assert i >= 0;
assert i == stackSize - 2 || i == stackSize - 3;
int base1 = runBase[i];
int len1 = runLen[i];
int base2 = runBase[i + 1];
int len2 = runLen[i + 1];
assert len1 > 0 && len2 > 0;
assert base1 + len1 == base2;
// if (i < 0 || i >= stackSize - 1) {
// throw new IllegalStateException("mergeAt called with invalid index: " + i);
// }
// System.out.println("Merging at index: " + i + " with stackSize: " + stackSize);
/*
* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run (i+1) goes away in any case.
*/
runLen[i] = len1 + len2;
// Update runPower before modifying the stack structure
runPower[i] = runPower[i + 1]; // Transfer power from the absorbed run
if (i == stackSize - 3) {
runBase[i + 1] = runBase[i + 2];
runLen[i + 1] = runLen[i + 2];
runPower[i + 1] = runPower[i + 2]; // Also slide the power value
}
stackSize--;
/*
* Find where the first element of run2 goes in run1. Prior elements
* in run1 can be ignored (because they're already in place).
*/
int k = gallopRight(a[base2], a, base1, len1, 0, c);
assert k >= 0;
base1 += k;
len1 -= k;
if (len1 == 0)
return;
/*
* Find where the last element of run1 goes in run2. Subsequent elements
* in run2 can be ignored (because they're already in place).
*/
len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
assert len2 >= 0;
if (len2 == 0)
return;
// Merge remaining runs, using tmp array with min(len1, len2) elements
if (len1 <= len2)
mergeLo(base1, len1, base2, len2);
else
mergeHi(base1, len1, base2, len2);
}
/**
* Locates the position at which to insert the specified key into the
* specified sorted range; if the range contains an element equal to key,
* returns the index of the leftmost equal element.
*
* @param key the key whose insertion point to search for
* @param a the array in which to search
* @param base the index of the first element in the range
* @param len the length of the range; must be > 0
* @param hint the index at which to begin the search, 0 <= hint < n.
* The closer hint is to the result, the faster this method will run.
* @param c the comparator used to order the range, and to search
* @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
* pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
* In other words, key belongs at index b + k; or in other words,
* the first k elements of a should precede key, and the last n - k
* should follow it.
*/
private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
Comparator<? super T> c) {
int lastOfs = 0;
int ofs = 1;
if (c.compare(key, a[base + hint]) > 0) {
int maxOfs = len - hint;
while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) ofs = maxOfs;
}
if (ofs > maxOfs) ofs = maxOfs;
lastOfs += hint;
ofs += hint;
} else {
int maxOfs = hint + 1;
while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) ofs = maxOfs;
}
if (ofs > maxOfs) ofs = maxOfs;
int tmp = lastOfs;
lastOfs = hint - ofs;
ofs = hint - tmp;
}
lastOfs++;
while (lastOfs < ofs) {
int m = lastOfs + ((ofs - lastOfs) >>> 1);
if (c.compare(key, a[base + m]) > 0) {
lastOfs = m + 1;
} else {
ofs = m;
}
}
return ofs;
}
/**
* Like gallopLeft, except that if the range contains an element equal to
* key, gallopRight returns the index after the rightmost equal element.
*
* @param key the key whose insertion point to search for
* @param a the array in which to search
* @param base the index of the first element in the range
* @param len the length of the range; must be > 0
* @param hint the index at which to begin the search, 0 <= hint < n.
* The closer hint is to the result, the faster this method will run.
* @param c the comparator used to order the range, and to search
* @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
*/
private static <T> int gallopRight(T key, T[] a, int base, int len,
int hint, Comparator<? super T> c) {
assert len > 0 && hint >= 0 && hint < len;
int ofs = 1;
int lastOfs = 0;
if (c.compare(key, a[base + hint]) < 0) {
// Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
int maxOfs = hint + 1;
while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) // int overflow
ofs = maxOfs;
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to b
int tmp = lastOfs;
lastOfs = hint - ofs;
ofs = hint - tmp;
} else { // a[b + hint] <= key
// Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
int maxOfs = len - hint;
while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
lastOfs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) // int overflow
ofs = maxOfs;
}
if (ofs > maxOfs)
ofs = maxOfs;
// Make offsets relative to b
lastOfs += hint;
ofs += hint;
}
assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
/*
* Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
* the right of lastOfs but no farther right than ofs. Do a binary
* search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
*/
lastOfs++;
while (lastOfs < ofs) {
int m = lastOfs + ((ofs - lastOfs) >>> 1);
if (c.compare(key, a[base + m]) < 0)
ofs = m; // key < a[b + m]
else
lastOfs = m + 1; // a[b + m] <= key
}
assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
return ofs;
}
/**
* Merges two adjacent runs in place, in a stable fashion. The first
* element of the first run must be greater than the first element of the
* second run (a[base1] > a[base2]), and the last element of the first run
* (a[base1 + len1-1]) must be greater than all elements of the second run.
*
* For performance, this method should be called only when len1 <= len2;
* its twin, mergeHi should be called if len1 >= len2. (Either method
* may be called if len1 == len2.)
*
* @param base1 index of first element in first run to be merged
* @param len1 length of first run to be merged (must be > 0)
* @param base2 index of first element in second run to be merged
* (must be aBase + aLen)
* @param len2 length of second run to be merged (must be > 0)
*/
private void mergeLo(int base1, int len1, int base2, int len2) {
assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
// Copy first run into temp array
T[] a = this.a; // For performance
T[] tmp = ensureCapacity(len1);
int cursor1 = tmpBase; // Indexes into tmp array
int cursor2 = base2; // Indexes int a
int dest = base1; // Indexes int a
System.arraycopy(a, base1, tmp, cursor1, len1);
// Move first element of second run and deal with degenerate cases
a[dest++] = a[cursor2++];
if (--len2 == 0) {
System.arraycopy(tmp, cursor1, a, dest, len1);
return;
}
if (len1 == 1) {
System.arraycopy(a, cursor2, a, dest, len2);
a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
return;
}
Comparator<? super T> c = this.c; // Use local variable for performance
int minGallop = this.minGallop; // " " " " "
outer:
while (true) {
int count1 = 0; // Number of times in a row that first run won
int count2 = 0; // Number of times in a row that second run won
/*
* Do the straightforward thing until (if ever) one run starts
* winning consistently.
*/
do {
assert len1 > 1 && len2 > 0;
if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
a[dest++] = a[cursor2++];
count2++;
count1 = 0;
if (--len2 == 0)
break outer;
} else {
a[dest++] = tmp[cursor1++];
count1++;
count2 = 0;
if (--len1 == 1)
break outer;
}
} while ((count1 | count2) < minGallop);
/*
* One run is winning so consistently that galloping may be a
* huge win. So try that, and continue galloping until (if ever)
* neither run appears to be winning consistently anymore.
*/
do {
assert len1 > 1 && len2 > 0;
count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
if (count1 != 0) {
System.arraycopy(tmp, cursor1, a, dest, count1);
dest += count1;
cursor1 += count1;
len1 -= count1;
if (len1 <= 1) // len1 == 1 || len1 == 0
break outer;
}
a[dest++] = a[cursor2++];
if (--len2 == 0)
break outer;
count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
if (count2 != 0) {
System.arraycopy(a, cursor2, a, dest, count2);
dest += count2;
cursor2 += count2;
len2 -= count2;
if (len2 == 0)
break outer;
}
a[dest++] = tmp[cursor1++];
if (--len1 == 1)
break outer;
minGallop--;
} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
if (minGallop < 0)
minGallop = 0;
minGallop += 2; // Penalize for leaving gallop mode
} // End of "outer" loop
this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
if (len1 == 1) {
assert len2 > 0;
System.arraycopy(a, cursor2, a, dest, len2);
a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
} else if (len1 == 0) {
throw new IllegalArgumentException(
"Comparison method violates its general contract!");
} else {
assert len2 == 0;
assert len1 > 1;
System.arraycopy(tmp, cursor1, a, dest, len1);
}
}
/**
* Like mergeLo, except that this method should be called only if
* len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
* may be called if len1 == len2.)
*
* @param base1 index of first element in first run to be merged
* @param len1 length of first run to be merged (must be > 0)
* @param base2 index of first element in second run to be merged
* (must be aBase + aLen)
* @param len2 length of second run to be merged (must be > 0)
*/
private void mergeHi(int base1, int len1, int base2, int len2) {
assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
// Copy second run into temp array
T[] a = this.a; // For performance
T[] tmp = ensureCapacity(len2);
int tmpBase = this.tmpBase;
System.arraycopy(a, base2, tmp, tmpBase, len2);
int cursor1 = base1 + len1 - 1; // Indexes into a
int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
int dest = base2 + len2 - 1; // Indexes into a
// Move last element of first run and deal with degenerate cases
a[dest--] = a[cursor1--];
if (--len1 == 0) {
System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
return;
}
if (len2 == 1) {
dest -= len1;
cursor1 -= len1;
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
a[dest] = tmp[cursor2];
return;
}
Comparator<? super T> c = this.c; // Use local variable for performance
int minGallop = this.minGallop; // " " " " "
outer:
while (true) {
int count1 = 0; // Number of times in a row that first run won
int count2 = 0; // Number of times in a row that second run won
/*
* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
do {
assert len1 > 0 && len2 > 1;
if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
a[dest--] = a[cursor1--];
count1++;
count2 = 0;
if (--len1 == 0)
break outer;
} else {
a[dest--] = tmp[cursor2--];
count2++;
count1 = 0;
if (--len2 == 1)
break outer;
}
} while ((count1 | count2) < minGallop);
/*
* One run is winning so consistently that galloping may be a
* huge win. So try that, and continue galloping until (if ever)
* neither run appears to be winning consistently anymore.
*/
do {
assert len1 > 0 && len2 > 1;
count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
if (count1 != 0) {
dest -= count1;
cursor1 -= count1;
len1 -= count1;
System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
if (len1 == 0)
break outer;
}
a[dest--] = tmp[cursor2--];
if (--len2 == 1)
break outer;
count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
if (count2 != 0) {
dest -= count2;
cursor2 -= count2;
len2 -= count2;
System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
if (len2 <= 1) // len2 == 1 || len2 == 0
break outer;
}
a[dest--] = a[cursor1--];
if (--len1 == 0)
break outer;
minGallop--;
} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
if (minGallop < 0)
minGallop = 0;
minGallop += 2; // Penalize for leaving gallop mode
} // End of "outer" loop
this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
if (len2 == 1) {
assert len1 > 0;
dest -= len1;
cursor1 -= len1;
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
} else if (len2 == 0) {
throw new IllegalArgumentException(
"Comparison method violates its general contract!");
} else {
assert len1 == 0;
assert len2 > 0;
System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
}
}
/**
* Ensures that the external array tmp has at least the specified
* number of elements, increasing its size if necessary. The size
* increases exponentially to ensure amortized linear time complexity.
*
* @param minCapacity the minimum required capacity of the tmp array
* @return tmp, whether or not it grew
*/
private T[] ensureCapacity(int minCapacity) {
if (tmpLen < minCapacity) {
// Compute smallest power of 2 > minCapacity
int newSize = -1 >>> Integer.numberOfLeadingZeros(minCapacity);
newSize++;
if (newSize < 0) // Not bloody likely!
newSize = minCapacity;
else
newSize = Math.min(newSize, a.length >>> 1);
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
T[] newArray = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), newSize);
tmp = newArray;
tmpLen = newSize;
tmpBase = 0;
}
return tmp;
}
}

View File

@ -22,14 +22,14 @@ public enum CglEnum implements DataEnum {
int runs = 3_010;
int runLength = 3_010;
int manyRuns = 30_000;
int manyRuns = 120_000;
int shortRunLength = 50;
// Constant factors
double a = 0.96;
double b = 0.25;
double c = 0.81;
double d = 1.0;
double d = 0.85;
return switch (this) {
case RANDOM_INTEGERS -> new RandomIntegers(listSize, seed);
@ -40,7 +40,7 @@ public enum CglEnum implements DataEnum {
AscendingRuns.newAscendingRuns((int) (c * runs), (int) (c * runLength), (int) (-0.5 * c * runLength));
case MANY_ASCENDING_RUNS -> AscendingRuns.newAscendingRuns(manyRuns, shortRunLength, -1 * shortRunLength);
case MANY_ASCENDING_RUNS_WITH_OVERLAP ->
AscendingRuns.newAscendingRuns((int) (d * manyRuns), (int) (d * shortRunLength), (int) (-0.5 * d * shortRunLength));
AscendingRuns.newAscendingRuns((int) (d * manyRuns), shortRunLength, (int) (-0.5 * shortRunLength));
};
}
}

View File

@ -4,6 +4,9 @@ import de.uni_marburg.powersort.FinnSort.FinnSort;
import de.uni_marburg.powersort.FinnSort.FasterFinnSort;
import de.uni_marburg.powersort.MSort.IMPL_M_1;
import de.uni_marburg.powersort.MSort.IMPL_M_2;
import de.uni_marburg.powersort.MSort.IMPL_M_3;
import de.uni_marburg.powersort.MSort.IMPL_M_4;
import de.uni_marburg.powersort.MSort.IMPL_M_5;
import de.uni_marburg.powersort.benchmark.NaturalOrder;
import de.uni_marburg.powersort.sort.dpqs.DualPivotQuicksort;
@ -14,11 +17,15 @@ public enum SortEnum {
FINN_SORT,
IMPL_M_10,
IMPL_M_20,
IMPL_M_30,
IMPL_M_40,
IMPL_M_50,
DPQS,
QUICK_SORT,
MERGE_SORT,
BUBBLE_SORT;
public SortImpl getSortImpl() {
return switch (this) {
case BUBBLE_SORT -> array -> BubbleSort.sort(array, NaturalOrder.INSTANCE);
@ -28,7 +35,10 @@ public enum SortEnum {
case TIM_SORT -> array -> TimSort.sort(array, 0, array.length, NaturalOrder.INSTANCE, null, 0, 0);
case FINN_SORT -> array -> FinnSort.sort(array, NaturalOrder.INSTANCE);
case IMPL_M_10 -> array -> IMPL_M_1.powerSort(array,NaturalOrder.INSTANCE);
case IMPL_M_20 -> array -> IMPL_M_2.sort(array, 0, array.length, NaturalOrder.INSTANCE, null, 0, 0);
case IMPL_M_20 -> array -> IMPL_M_2.powerSort(array,NaturalOrder.INSTANCE);
case IMPL_M_30 -> array -> IMPL_M_3.powerSort(array,NaturalOrder.INSTANCE);
case IMPL_M_40 -> array -> IMPL_M_4.sort(array, 0, array.length, NaturalOrder.INSTANCE, null, 0, 0);
case IMPL_M_50 -> array -> IMPL_M_5.sort(array, 0, array.length, NaturalOrder.INSTANCE, null, 0, 0);
case FASTER_FINN_SORT -> array -> FasterFinnSort.sort(array, 0, array.length, NaturalOrder.INSTANCE, null, 0, 0);
case ASORT -> array -> ASort.sort(array, NaturalOrder.INSTANCE);
};

View File

@ -1,6 +1,6 @@
package de.uni_marburg.powersort.MSort;
import static de.uni_marburg.powersort.MSort.IMPL_M_1.*;
import static de.uni_marburg.powersort.MSort.IMPL_M_3.*;
import java.util.ArrayList;
import java.util.Arrays;
@ -13,8 +13,8 @@ public class PowerSortT {
public static void main(String[] args) {
testFillWithAscRunsHighToLow();
testMerge();
testMergeInplace();
//testMerge();
// testMergeInplace();
testExtendRun();
testPower();
testPowerFast();
@ -32,25 +32,25 @@ public class PowerSortT {
}
// Test for merge
public static void testMerge() {
Integer[] run1 ={1,4,6};
Integer []run2 = {2, 3, 5};
Integer[] result = merge(run1, run2, NaturalOrder.INSTANCE);
System.out.println("Test merge: " + result);
}
// public static void testMerge() {
// Integer[] run1 ={1,4,6};
// Integer []run2 = {2, 3, 5};
// Integer[] result = merge(run1, run2, NaturalOrder.INSTANCE);
// System.out.println("Test merge: " + result);
// }
// Test for mergeInplace
public static void testMergeInplace() {
Integer[] A = {1,4,6,2,3,5};
mergeInplace(A, 0, 3, 6,NaturalOrder.INSTANCE);
System.out.println("Test mergeInplace: " + A);
}
// public static void testMergeInplace() {
// Integer[] A = {1,4,6,2,3,5};
// mergeInplace(A, 0, 3, 6,NaturalOrder.INSTANCE);
// System.out.println("Test mergeInplace: " + A);
// }
// Test for extendRun
public static void testExtendRun() {
Integer [] A = {1, 2, 3, 6, 5, 4};
int endIndex = extendRun(A, 0,NaturalOrder.INSTANCE);
System.out.println("Test extendRun (from 0): " + endIndex);
// int endIndex = extendRun(A, 0,NaturalOrder.INSTANCE);
// System.out.println("Test extendRun (from 0): " + endIndex);
System.out.println("Modified List: " + A);
}
@ -59,8 +59,8 @@ public class PowerSortT {
int[] run1 = {0, 3};
int[] run2 = {3, 3};
int n = 6;
int powerValue = power(run1, run2, n);
System.out.println("Test power: " + powerValue);
// int powerValue = power(run1, run2, n);
// System.out.println("Test power: " + powerValue);
}
// Test for powerFast
@ -68,8 +68,8 @@ public class PowerSortT {
int[] run1 = {0, 3};
int[] run2 = {3, 3};
int n = 6;
int powerFastValue = powerFast(run1, run2, n);
System.out.println("Test powerFast: " + powerFastValue);
// int powerFastValue = powerFast(run1, run2, n);
// System.out.println("Test powerFast: " + powerFastValue);
}
// Test for mergeTopmost2
@ -78,7 +78,7 @@ public class PowerSortT {
List<int[]> runs = new ArrayList<>();
runs.add(new int[]{0, 3, 1});
runs.add(new int[]{3, 3, 1});
mergeTopmost2(A, runs,NaturalOrder.INSTANCE);
// mergeTopmost2(A, runs,NaturalOrder.INSTANCE);
System.out.println("Test mergeTopmost2: " + A);
}

View File

@ -9,9 +9,9 @@ import java.util.stream.IntStream;
import de.uni_marburg.powersort.benchmark.NaturalOrder;
import org.junit.jupiter.api.Test;
import static de.uni_marburg.powersort.MSort.IMPL_M_1.MERGE_COST;
import static de.uni_marburg.powersort.MSort.IMPL_M_1.fillWithAscRunsHighToLow;
import static de.uni_marburg.powersort.MSort.IMPL_M_1.powerSort;
//import static de.uni_marburg.powersort.MSort.IMPL_M_3.MERGE_COST;
import static de.uni_marburg.powersort.MSort.IMPL_M_3.fillWithAscRunsHighToLow;
import static de.uni_marburg.powersort.MSort.IMPL_M_3.powerSort;
class PowerSortTest {
@Test
@ -28,11 +28,11 @@ class PowerSortTest {
System.out.println();
fillWithAscRunsHighToLow(a, runs, 1);
MERGE_COST = 0;
//MERGE_COST = 0;
System.out.println("Sorting with Powersort:");
powerSort(a,NaturalOrder.INSTANCE);
System.out.println("Sorted Array"+Arrays.toString(a));
System.out.println("Merge cost: " + MERGE_COST);
// System.out.println("Merge cost: " + MERGE_COST);
}
@Test

View File

@ -1,5 +1,8 @@
package de.uni_marburg.powersort.sort;
import org.junit.jupiter.api.Disabled;
@Disabled("Disabled in favor of IMPL_M_2")
public class IMPL_M_1Test extends AbstractSortTest {
IMPL_M_1Test() {
sortAlg = SortEnum.IMPL_M_10;

View File

@ -0,0 +1,10 @@
package de.uni_marburg.powersort.sort;
import org.junit.jupiter.api.Disabled;
@Disabled("Disabled in favor of IMPL_M_3")
public class IMPL_M_2Test extends AbstractSortTest {
IMPL_M_2Test() {
sortAlg = SortEnum.IMPL_M_20;
}
}

View File

@ -0,0 +1,10 @@
package de.uni_marburg.powersort.sort;
import org.junit.jupiter.api.Disabled;
@Disabled("Disabled in favor of IMPL_M_4")
public class IMPL_M_3Test extends AbstractSortTest {
IMPL_M_3Test() {
sortAlg = SortEnum.IMPL_M_30;
}
}

View File

@ -0,0 +1,7 @@
package de.uni_marburg.powersort.sort;
public class IMPL_M_4Test extends AbstractSortTest {
IMPL_M_4Test() {
sortAlg = SortEnum.IMPL_M_40;
}
}