Merge remote-tracking branch 'origin/main'

# Conflicts:
#	app/src/main/java/de/uni_marburg/powersort/FinnSort/FasterFinnSort.java
This commit is contained in:
Daniel Langbein 2025-01-21 14:18:28 +01:00
commit 592eda73a6
Signed by: langfingaz
GPG Key ID: 6C47C753F0823002
7 changed files with 288 additions and 143 deletions

View File

@ -26,6 +26,7 @@ package de.uni_marburg.powersort.FinnSort;
*/ */
import java.util.Arrays;
import java.util.Comparator; import java.util.Comparator;
import static java.lang.Math.pow; import static java.lang.Math.pow;
@ -68,13 +69,13 @@ public class FasterFinnSort<T> {
* This is the minimum sized sequence that will be merged. Shorter * This is the minimum sized sequence that will be merged. Shorter
* sequences will be lengthened by calling binarySort. If the entire * sequences will be lengthened by calling binarySort. If the entire
* array is less than this length, no merges will be performed. * array is less than this length, no merges will be performed.
* * <p>
* This constant should be a power of two. It was 64 in Tim Peter's C * This constant should be a power of two. It was 64 in Tim Peter's C
* implementation, but 32 was empirically determined to work better in * implementation, but 32 was empirically determined to work better in
* this implementation. In the unlikely event that you set this constant * this implementation. In the unlikely event that you set this constant
* to be a number that's not a power of two, you'll need to change the * to be a number that's not a power of two, you'll need to change the
* {@link #minRunLength} computation. * {@link #minRunLength} computation.
* * <p>
* If you decrease this constant, you must change the stackLen * If you decrease this constant, you must change the stackLen
* computation in the TimSort constructor, or you risk an * computation in the TimSort constructor, or you risk an
* ArrayOutOfBounds exception. See listsort.txt for a discussion * ArrayOutOfBounds exception. See listsort.txt for a discussion
@ -87,6 +88,7 @@ public class FasterFinnSort<T> {
* The array being sorted. * The array being sorted.
*/ */
private final T[] a; private final T[] a;
private final int rangeSize;
/** /**
* The comparator for this sort. * The comparator for this sort.
@ -97,7 +99,7 @@ public class FasterFinnSort<T> {
* When we get into galloping mode, we stay there until both runs win less * When we get into galloping mode, we stay there until both runs win less
* often than MIN_GALLOP consecutive times. * often than MIN_GALLOP consecutive times.
*/ */
private static final int MIN_GALLOP = 7; private static final int MIN_GALLOP = 7;
/** /**
* This controls when we get *into* galloping mode. It is initialized * This controls when we get *into* galloping mode. It is initialized
@ -128,9 +130,9 @@ public class FasterFinnSort<T> {
* A stack of pending runs yet to be merged. Run i starts at * A stack of pending runs yet to be merged. Run i starts at
* address base[i] and extends for len[i] elements. It's always * address base[i] and extends for len[i] elements. It's always
* true (so long as the indices are in bounds) that: * true (so long as the indices are in bounds) that:
* * <p>
* runBase[i] + runLen[i] == runBase[i + 1] * runBase[i] + runLen[i] == runBase[i + 1]
* * <p>
* so we could cut the storage for this, but it's a minor amount, * so we could cut the storage for this, but it's a minor amount,
* and keeping all the info explicit simplifies the code. * and keeping all the info explicit simplifies the code.
*/ */
@ -142,29 +144,28 @@ public class FasterFinnSort<T> {
/** /**
* Creates a TimSort instance to maintain the state of an ongoing sort. * Creates a TimSort instance to maintain the state of an ongoing sort.
* *
* @param a the array to be sorted * @param a the array to be sorted
* @param c the comparator to determine the order of the sort * @param c the comparator to determine the order of the sort
* @param work a workspace array (slice) * @param work a workspace array (slice)
* @param workBase origin of usable space in work array * @param workBase origin of usable space in work array
* @param workLen usable size of work array * @param workLen usable size of work array
*/ */
FasterFinnSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) { FasterFinnSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen, int rangeSize) {
this.a = a; this.a = a;
this.c = c; this.c = c;
this.rangeSize = rangeSize;
// Allocate temp storage (which may be increased later if necessary) // Allocate temp storage (which may be increased later if necessary)
int len = a.length; int len = a.length;
int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ? int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
len >>> 1 : INITIAL_TMP_STORAGE_LENGTH; len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
if (work == null || workLen < tlen || workBase + tlen > work.length) { if (work == null || workLen < tlen || workBase + tlen > work.length) {
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"}) @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
T[] newArray = (T[])java.lang.reflect.Array.newInstance T[] newArray = (T[]) java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), tlen); (a.getClass().getComponentType(), tlen);
tmp = newArray; tmp = newArray;
tmpBase = 0; tmpBase = 0;
tmpLen = tlen; tmpLen = tlen;
} } else {
else {
tmp = work; tmp = work;
tmpBase = workBase; tmpBase = workBase;
tmpLen = workLen; tmpLen = workLen;
@ -204,24 +205,24 @@ public class FasterFinnSort<T> {
* any necessary array bounds checks and expanding parameters into * any necessary array bounds checks and expanding parameters into
* the required forms. * the required forms.
* *
* @param a the array to be sorted * @param a the array to be sorted
* @param lo the index of the first element, inclusive, to be sorted * @param lo the index of the first element, inclusive, to be sorted
* @param hi the index of the last element, exclusive, to be sorted * @param hi the index of the last element, exclusive, to be sorted
* @param c the comparator to use * @param c the comparator to use
* @param work a workspace array (slice) * @param work a workspace array (slice)
* @param workBase origin of usable space in work array * @param workBase origin of usable space in work array
* @param workLen usable size of work array * @param workLen usable size of work array
* @since 1.8 * @since 1.8
*/ */
public static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c, public static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
T[] work, int workBase, int workLen) { T[] work, int workBase, int workLen) {
assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length; assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
int nRemaining = hi - lo;
int nRemaining = hi - lo;
if (nRemaining < 2) if (nRemaining < 2)
return; // Arrays of size 0 and 1 are always sorted return; // Arrays of size 0 and 1 are always sorted
// If array is small, do a "mini-TimSort" with no merges // If array is small, do a "mini-TimSort" with no merges
if (nRemaining < MIN_MERGE) { if (nRemaining < MIN_MERGE) {
int initRunLen = countRunAndMakeAscending(a, lo, hi, c); int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
binarySort(a, lo, hi, lo + initRunLen, c); binarySort(a, lo, hi, lo + initRunLen, c);
@ -233,8 +234,8 @@ public class FasterFinnSort<T> {
* extending short natural runs to minRun elements, and merging runs * extending short natural runs to minRun elements, and merging runs
* to maintain stack invariant. * to maintain stack invariant.
*/ */
FasterFinnSort<T> ts = new FasterFinnSort<>(a, c, work, workBase, workLen); FasterFinnSort<T> fs = new FasterFinnSort<>(a, c, work, workBase, workLen, hi - lo);
int minRun = ts.minRunLength(nRemaining); int minRun = fs.minRunLength(nRemaining);
do { do {
// Identify next run // Identify next run
int runLen = countRunAndMakeAscending(a, lo, hi, c); int runLen = countRunAndMakeAscending(a, lo, hi, c);
@ -247,8 +248,8 @@ public class FasterFinnSort<T> {
} }
// Push run onto pending-run stack, and maybe merge // Push run onto pending-run stack, and maybe merge
ts.pushRun(lo, runLen, hi - lo); fs.pushRun(lo, runLen);
ts.mergeCollapse(); fs.mergeCollapse();
// Advance to find next run // Advance to find next run
lo += runLen; lo += runLen;
@ -257,8 +258,8 @@ public class FasterFinnSort<T> {
// Merge all remaining runs to complete sort // Merge all remaining runs to complete sort
assert lo == hi; assert lo == hi;
ts.mergeForceCollapse(); fs.mergeForceCollapse();
assert ts.stackSize == 1; assert fs.stackSize == 1;
} }
/** /**
@ -266,18 +267,18 @@ public class FasterFinnSort<T> {
* insertion sort. This is the best method for sorting small numbers * insertion sort. This is the best method for sorting small numbers
* of elements. It requires O(n log n) compares, but O(n^2) data * of elements. It requires O(n log n) compares, but O(n^2) data
* movement (worst case). * movement (worst case).
* * <p>
* If the initial part of the specified range is already sorted, * If the initial part of the specified range is already sorted,
* this method can take advantage of it: the method assumes that the * this method can take advantage of it: the method assumes that the
* elements from index {@code lo}, inclusive, to {@code start}, * elements from index {@code lo}, inclusive, to {@code start},
* exclusive are already sorted. * exclusive are already sorted.
* *
* @param a the array in which a range is to be sorted * @param a the array in which a range is to be sorted
* @param lo the index of the first element in the range to be sorted * @param lo the index of the first element in the range to be sorted
* @param hi the index after the last element in the range to be sorted * @param hi the index after the last element in the range to be sorted
* @param start the index of the first element in the range that is * @param start the index of the first element in the range that is
* not already known to be sorted ({@code lo <= start <= hi}) * not already known to be sorted ({@code lo <= start <= hi})
* @param c comparator to used for the sort * @param c comparator to used for the sort
*/ */
@SuppressWarnings("fallthrough") @SuppressWarnings("fallthrough")
static <T> void binarySort(T[] a, int lo, int hi, int start, static <T> void binarySort(T[] a, int lo, int hi, int start,
@ -285,7 +286,7 @@ public class FasterFinnSort<T> {
assert lo <= start && start <= hi; assert lo <= start && start <= hi;
if (start == lo) if (start == lo)
start++; start++;
for ( ; start < hi; start++) { for (; start < hi; start++) {
T pivot = a[start]; T pivot = a[start];
// Set left (and right) to the index where a[start] (pivot) belongs // Set left (and right) to the index where a[start] (pivot) belongs
@ -329,26 +330,26 @@ public class FasterFinnSort<T> {
* Returns the length of the run beginning at the specified position in * Returns the length of the run beginning at the specified position in
* the specified array and reverses the run if it is descending (ensuring * the specified array and reverses the run if it is descending (ensuring
* that the run will always be ascending when the method returns). * that the run will always be ascending when the method returns).
* * <p>
* A run is the longest ascending sequence with: * A run is the longest ascending sequence with:
* * <p>
* a[lo] <= a[lo + 1] <= a[lo + 2] <= ... * a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
* * <p>
* or the longest descending sequence with: * or the longest descending sequence with:
* * <p>
* a[lo] > a[lo + 1] > a[lo + 2] > ... * a[lo] > a[lo + 1] > a[lo + 2] > ...
* * <p>
* For its intended use in a stable mergesort, the strictness of the * For its intended use in a stable mergesort, the strictness of the
* definition of "descending" is needed so that the call can safely * definition of "descending" is needed so that the call can safely
* reverse a descending sequence without violating stability. * reverse a descending sequence without violating stability.
* *
* @param a the array in which a run is to be counted and possibly reversed * @param a the array in which a run is to be counted and possibly reversed
* @param lo index of the first element in the run * @param lo index of the first element in the run
* @param hi index after the last element that may be contained in the run. * @param hi index after the last element that may be contained in the run.
* It is required that {@code lo < hi}. * It is required that {@code lo < hi}.
* @param c the comparator to used for the sort * @param c the comparator to used for the sort
* @return the length of the run beginning at the specified position in * @return the length of the run beginning at the specified position in
* the specified array * the specified array
*/ */
static <T> int countRunAndMakeAscending(T[] a, int lo, int hi, static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
Comparator<? super T> c) { Comparator<? super T> c) {
@ -373,7 +374,7 @@ public class FasterFinnSort<T> {
/** /**
* Reverse the specified range of the specified array. * Reverse the specified range of the specified array.
* *
* @param a the array in which a range is to be reversed * @param a the array in which a range is to be reversed
* @param lo the index of the first element in the range to be reversed * @param lo the index of the first element in the range to be reversed
* @param hi the index after the last element in the range to be reversed * @param hi the index after the last element in the range to be reversed
*/ */
@ -390,14 +391,14 @@ public class FasterFinnSort<T> {
* Returns the minimum acceptable run length for an array of the specified * Returns the minimum acceptable run length for an array of the specified
* length. Natural runs shorter than this will be extended with * length. Natural runs shorter than this will be extended with
* {@link #binarySort}. * {@link #binarySort}.
* * <p>
* Roughly speaking, the computation is: * Roughly speaking, the computation is:
* * <p>
* If n < MIN_MERGE, return n (it's too small to bother with fancy stuff). * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return MIN_MERGE/2. * Else if n is an exact power of 2, return MIN_MERGE/2.
* Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k * Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
* is close to, but strictly less than, an exact power of 2. * is close to, but strictly less than, an exact power of 2.
* * <p>
* For the rationale, see listsort.txt. * For the rationale, see listsort.txt.
* *
* @param n the length of the array to be sorted * @param n the length of the array to be sorted
@ -419,24 +420,24 @@ public class FasterFinnSort<T> {
* @param runBase index of the first element in the run * @param runBase index of the first element in the run
* @param runLen the number of elements in the run * @param runLen the number of elements in the run
*/ */
void pushRun(int runBase, int runLen, int rangeSize) { void pushRun(int runBase, int runLen) {
this.runBase[stackSize] = runBase; this.runBase[stackSize] = runBase;
this.runLen[stackSize] = runLen; this.runLen[stackSize] = runLen;
this.runPower[stackSize] = power(stackSize, rangeSize); this.runPower[stackSize] = power(stackSize);
stackSize++; stackSize++;
} }
/** /**
* Examines the stack of runs waiting to be merged and merges adjacent runs * Examines the stack of runs waiting to be merged and merges adjacent runs
* until the stack invariants are reestablished: * until the stack invariants are reestablished:
* * <p>
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1] * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
* 2. runLen[i - 2] > runLen[i - 1] * 2. runLen[i - 2] > runLen[i - 1]
* * <p>
* This method is called each time a new run is pushed onto the stack, * This method is called each time a new run is pushed onto the stack,
* so the invariants are guaranteed to hold for i < stackSize upon * so the invariants are guaranteed to hold for i < stackSize upon
* entry to the method. * entry to the method.
* * <p>
* Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, * Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
* Richard Bubel and Reiner Hahnle, this is fixed with respect to * Richard Bubel and Reiner Hahnle, this is fixed with respect to
* the analysis in "On the Worst-Case Complexity of TimSort" by * the analysis in "On the Worst-Case Complexity of TimSort" by
@ -444,16 +445,35 @@ public class FasterFinnSort<T> {
*/ */
void mergeCollapse() { void mergeCollapse() {
while (stackSize > 1) { while (stackSize > 1) {
int n = stackSize - 2; if (runPower[stackSize - 1] < runPower[stackSize - 2]) {
if (n > 0 && runPower[n + 1] < runPower[n]) { mergeAt(stackSize - 3);
mergeAt(n);
} else { } else {
break; // Invariant is established break; // Invariant is established
} }
} }
} }
/*
int power(int stackSize, int rangeSize) { private int power(int stackSize) {
if (stackSize == 0) {
return 0;
}
// int = (right - left + 1); = RangeSize
long l = runLen[stackSize - 1]; // + (long) runBase[stackSize]; // - ((long) left << 1); // 2*middleA
long r = runLen[stackSize]; // - ((long) left << 1); // 2*middleB
int a = (int) ((l << 30) / rangeSize); // middleA / 2n
int b = (int) ((r << 30) / rangeSize); // middleB / 2n
return Integer.numberOfLeadingZeros(a ^ b);
}
*/
int power(int stackSize) {
/*
System.out.println(Arrays.toString(runBase));
System.out.println(Arrays.toString(runLen));
System.out.println(Arrays.toString(runPower));
System.out.println(stackSize);
System.out.println(rangeSize);
System.out.println();
*/
if (stackSize == 0) if (stackSize == 0)
return 0; return 0;
@ -465,18 +485,50 @@ public class FasterFinnSort<T> {
int result = 0; int result = 0;
while (b < rangeSize) { while (true) {
++result; ++result;
if (a >= rangeSize) { if (a >= rangeSize) {
a -= rangeSize; a -= rangeSize;
b -= rangeSize; b -= rangeSize;
} }
if (b >= rangeSize) {
break;
}
a <<= 1; a <<= 1;
b <<= 1; b <<= 1;
} }
return result; return result;
} }
/*
public int power(int stackSize) {
System.out.println(Arrays.toString(runBase));
System.out.println(Arrays.toString(runLen));
System.out.println(Arrays.toString(runPower));
System.out.println(stackSize);
System.out.println(rangeSize);
System.out.println();
if (stackSize == 0)
return 0;
int n_1 = this.runLen[stackSize - 1];
int n_2 = this.runLen[stackSize];
double a = ((double) this.runBase[stackSize - 1] + 0.5d * n_1 - 1d) / this.rangeSize;
double b = ((double) this.runBase[stackSize] + 0.5d * n_2 - 1d) / this.rangeSize;
int l = 0;
while ((int) (a * pow(2, l)) == (int) (b * pow(2 ,l))) {
l++;
}
return l;
}
*/
/* /*
Backup mergeCollapse() von TimSort: Backup mergeCollapse() von TimSort:
@ -519,7 +571,7 @@ public class FasterFinnSort<T> {
private void mergeAt(int i) { private void mergeAt(int i) {
assert stackSize >= 2; assert stackSize >= 2;
assert i >= 0; assert i >= 0;
assert i == stackSize - 2 || i == stackSize - 3; //assert i == stackSize - 3;
int base1 = runBase[i]; int base1 = runBase[i];
int len1 = runLen[i]; int len1 = runLen[i];
@ -533,12 +585,14 @@ public class FasterFinnSort<T> {
* run now, also slide over the last run (which isn't involved * run now, also slide over the last run (which isn't involved
* in this merge). The current run (i+1) goes away in any case. * in this merge). The current run (i+1) goes away in any case.
*/ */
runLen[i] = len1 + len2;
if (i == stackSize - 3) {
runBase[i + 1] = runBase[i + 2];
runLen[i + 1] = runLen[i + 2];
}
stackSize--; stackSize--;
runLen[i] = len1 + len2;
// @TODO: Check power before pushing the run
runLen[i + 1] = runLen[i + 2];
runBase[i + 1] = runBase[i + 2];
runPower[i + 1] = runPower[i + 2];
//runPower[i] = power(i);
/* /*
* Find where the first element of run2 goes in run1. Prior elements * Find where the first element of run2 goes in run1. Prior elements

View File

@ -1,14 +1,16 @@
package de.uni_marburg.powersort.FinnSort; package de.uni_marburg.powersort.FinnSort;
class Run { public class Run {
int start; public int start;
int end; public int end;
int power; int power;
public int len;
public Run(int i, int j, int p) { public Run(int i, int j, int p) {
start = i; start = i;
end = j; end = j;
power = p; power = p;
len = end - start;
} }
} }

View File

@ -1,6 +1,7 @@
package de.uni_marburg.powersort.MSort; package de.uni_marburg.powersort.MSort;
import java.util.ArrayList; import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections; import java.util.Collections;
import java.util.Comparator; import java.util.Comparator;
import java.util.List; import java.util.List;
@ -29,9 +30,9 @@ public class IMPL_M_1 {
*/ */
protected static int MERGE_COST = 0; protected static int MERGE_COST = 0;
public static void fillWithAscRunsHighToLow(List<Integer> A, int[] runLengths, int runLenFactor) { public static void fillWithAscRunsHighToLow(Integer[] A, int[] runLengths, int runLenFactor) {
//A has a fixed size, but it doesn't have any meaningful values //A has a fixed size, but it doesn't have any meaningful values
int n = A.size(); int n = A.length;
//This ensures that the sum of runLengths multiplied by runLenFactor equals the list size n. If not, an AssertionError is thrown. //This ensures that the sum of runLengths multiplied by runLenFactor equals the list size n. If not, an AssertionError is thrown.
assert IntStream.of(runLengths).sum() * runLenFactor == n; assert IntStream.of(runLengths).sum() * runLenFactor == n;
@ -39,34 +40,59 @@ public class IMPL_M_1 {
//IntStream.of(runLengths).forEach(System.out::println); //IntStream.of(runLengths).forEach(System.out::println);
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
//putting i in set a, while a is always the last index of n //putting i in set a, while a is always the last index of n
A.set(i, n - i); A[i] = n - i;
} }
int i = 0;
//For each value l in the array runLengths, do the following //For each value l in the array runLengths, do the following
// runLengths = {2, 3, 5}, the loop will run three times, with l taking values 2, 3, and 5 respectively. // runLengths = {2, 3, 5}, the loop will run three times, with l taking values 2, 3, and 5 respectively.
int startIndex = 0;
for (int l : runLengths) { for (int l : runLengths) {
int L = l * runLenFactor; int L = l * runLenFactor;
List<Integer> sublist = A.subList(i, i + L); // Sort the subarray from startIndex to startIndex+L manually
Collections.sort(sublist); for (int i = startIndex; i < startIndex + L - 1; i++) {
i += L; for (int j = startIndex; j < startIndex + L - 1 - (i - startIndex); j++) {
if (A[j] > A[j + 1]) {
// Swap elements
int temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;
}
}
}
startIndex += L;
} }
} }
static <T> List<T> merge(List<T> run1, List<T> run2, Comparator<? super T> c) { static <T> T[] merge(T[] run1, T[] run2, Comparator<? super T> c) {
List<T> result = new ArrayList<>(); /**
while (!run1.isEmpty() && !run2.isEmpty()) { * We need this because:
* In Java, you cannot create generic arrays directly (can't write new T[size])
* The workaround is to create an Object array and cast it to T[]
* This casting generates a warning because the compiler can't verify the type safety at runtime due to Java's type erasure
* **/
@SuppressWarnings("unchecked")
T[] result = (T[]) new Object[run1.length + run2.length];
int i = 0, j = 0, k = 0;
while (i < run1.length && j < run2.length) {
//This comparison only works if the lists are sorted //This comparison only works if the lists are sorted
if (c.compare(run1.getFirst(),run2.getFirst()) < 0) { if (c.compare(run1[i], run2[j]) <= 0) {
result.add(run1.removeFirst()); result[k++] = run1[i++];
} else { } else {
result.add(run2.removeFirst()); result[k++] = run2[j++];
} }
} }
// can be improved by finding out which one is empty and only add the other one // can be improved by finding out which one is empty and only add the other one
result.addAll(run1); // Copy remaining elements
result.addAll(run2); while (i < run1.length) {
result[k++] = run1[i++];
}
while (j < run2.length) {
result[k++] = run2[j++];
}
return result; return result;
} }
@ -85,9 +111,9 @@ public class IMPL_M_1 {
} }
static <T> void mergeInplace(T[] a, int i, int m, int j, Comparator<? super T> c) { static <T> void mergeInplace(T[] a, int i, int m, int j, Comparator<? super T> c) {
// System.out.printf("Merge(%d, %d, %d)%n", i, m, j); System.out.printf("Merge(%d, %d, %d)%n", i, m, j);
MERGE_COST += j - i; MERGE_COST += j - i;
// Create temporary arrays for merging // Create temporary arrays for merging
@SuppressWarnings("unchecked") @SuppressWarnings("unchecked")
T[] left = (T[]) new Object[m - i]; T[] left = (T[]) new Object[m - i];
@SuppressWarnings("unchecked") @SuppressWarnings("unchecked")
@ -98,22 +124,11 @@ public class IMPL_M_1 {
System.arraycopy(a, m, right, 0, j - m); System.arraycopy(a, m, right, 0, j - m);
// Merge back to original array // Merge back to original array
int k = i, l = 0, r = 0; // Merge the runs
while (l < left.length && r < right.length) { T[] merged = merge(left, right, c);
if (c.compare(left[l], right[r]) <= 0) {
a[k++] = left[l++];
} else {
a[k++] = right[r++];
}
}
// Copy remaining elements //copy back to original array
while (l < left.length) { System.arraycopy(merged, 0, a, i,merged.length);
a[k++] = left[l++];
}
while (r < right.length) {
a[k++] = right[r++];
}
} }

View File

@ -79,7 +79,7 @@ public class IMPL_M_2<T>{
* of the minimum stack length required as a function of the length * of the minimum stack length required as a function of the length
* of the array being sorted and the minimum merge sequence length. * of the array being sorted and the minimum merge sequence length.
*/ */
private static final int MIN_MERGE = 24; private static final int MIN_MERGE = 32;
/** /**
* The array being sorted. * The array being sorted.

View File

@ -7,6 +7,8 @@ import java.util.Arrays;
import java.util.Collections; import java.util.Collections;
import java.util.List; import java.util.List;
import de.uni_marburg.powersort.benchmark.NaturalOrder;
public class PowerSortT { public class PowerSortT {
public static void main(String[] args) { public static void main(String[] args) {
@ -22,7 +24,7 @@ public class PowerSortT {
// Test for fillWithAscRunsHighToLow // Test for fillWithAscRunsHighToLow
public static void testFillWithAscRunsHighToLow() { public static void testFillWithAscRunsHighToLow() {
List<Integer> A = new ArrayList<>(Collections.nCopies(10, 0)); Integer[] A = new Integer[10];
int[] runLengths = {2, 3, 5}; int[] runLengths = {2, 3, 5};
int runLenFactor = 1; int runLenFactor = 1;
fillWithAscRunsHighToLow(A, runLengths, runLenFactor); fillWithAscRunsHighToLow(A, runLengths, runLenFactor);
@ -31,24 +33,24 @@ public class PowerSortT {
// Test for merge // Test for merge
public static void testMerge() { public static void testMerge() {
List<Integer> run1 = new ArrayList<>(Arrays.asList(1, 4, 6)); Integer[] run1 ={1,4,6};
List<Integer> run2 = new ArrayList<>(Arrays.asList(2, 3, 5)); Integer []run2 = {2, 3, 5};
// List<Integer> result = merge(run1, run2); Integer[] result = merge(run1, run2, NaturalOrder.INSTANCE);
// System.out.println("Test merge: " + result); System.out.println("Test merge: " + result);
} }
// Test for mergeInplace // Test for mergeInplace
public static void testMergeInplace() { public static void testMergeInplace() {
List<Integer> A = new ArrayList<>(Arrays.asList(1, 4, 6, 2, 3, 5)); Integer[] A = {1,4,6,2,3,5};
//mergeInplace(A, 0, 3, 6); mergeInplace(A, 0, 3, 6,NaturalOrder.INSTANCE);
System.out.println("Test mergeInplace: " + A); System.out.println("Test mergeInplace: " + A);
} }
// Test for extendRun // Test for extendRun
public static void testExtendRun() { public static void testExtendRun() {
List<Integer> A = new ArrayList<>(Arrays.asList(1, 2, 3, 6, 5, 4)); Integer [] A = {1, 2, 3, 6, 5, 4};
// int endIndex = extendRun(A, 0); int endIndex = extendRun(A, 0,NaturalOrder.INSTANCE);
// System.out.println("Test extendRun (from 0): " + endIndex); System.out.println("Test extendRun (from 0): " + endIndex);
System.out.println("Modified List: " + A); System.out.println("Modified List: " + A);
} }
@ -72,18 +74,18 @@ public class PowerSortT {
// Test for mergeTopmost2 // Test for mergeTopmost2
public static void testMergeTopmost2() { public static void testMergeTopmost2() {
List<Integer> A = new ArrayList<>(Arrays.asList(1, 3, 5, 2, 4, 6)); Integer[] A = {1, 3, 5, 2, 4, 6};
List<int[]> runs = new ArrayList<>(); List<int[]> runs = new ArrayList<>();
runs.add(new int[]{0, 3, 1}); runs.add(new int[]{0, 3, 1});
runs.add(new int[]{3, 3, 1}); runs.add(new int[]{3, 3, 1});
// mergeTopmost2(A, runs); mergeTopmost2(A, runs,NaturalOrder.INSTANCE);
System.out.println("Test mergeTopmost2: " + A); System.out.println("Test mergeTopmost2: " + A);
} }
// Test for powerSort // Test for powerSort
public static void testPowerSort() { public static void testPowerSort() {
List<Integer> A = new ArrayList<>(Arrays.asList(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)); Integer [] A = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
// powerSort(A); powerSort(A, NaturalOrder.INSTANCE);
System.out.println("Test powerSort: " + A); System.out.println("Test powerSort: " + A);
} }
} }

View File

@ -6,6 +6,7 @@ import java.util.List;
import java.util.stream.Collectors; import java.util.stream.Collectors;
import java.util.stream.IntStream; import java.util.stream.IntStream;
import de.uni_marburg.powersort.benchmark.NaturalOrder;
import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Test;
import static de.uni_marburg.powersort.MSort.IMPL_M_1.MERGE_COST; import static de.uni_marburg.powersort.MSort.IMPL_M_1.MERGE_COST;
@ -17,28 +18,30 @@ class PowerSortTest {
public void testWithOneInputList() { public void testWithOneInputList() {
// List<Integer> list = new ArrayList<>(List.of(5, 2, 8, 12, 1, 6)); // List<Integer> list = new ArrayList<>(List.of(5, 2, 8, 12, 1, 6));
// extendRun(list, 0); // extendRun(list, 0);
//System.out.println(list); //System.out.println(list);
// example from slides he wrote this // example from slides he wrote this
int[] runs = {5, 3, 3, 14, 1, 2}; // int[] runs = {5, 3, 3, 14, 1, 2};
runs = new int[]{9, 16, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}; int [] runs = new int[]{9, 16, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
int totalSize = Arrays.stream(runs).sum();
List<Integer> a = new ArrayList<>(IntStream.range(0, Arrays.stream(runs).sum()).boxed().collect(Collectors.toList())); Integer[] a = new Integer[totalSize];
System.out.println(); System.out.println();
fillWithAscRunsHighToLow(a, runs, 1); fillWithAscRunsHighToLow(a, runs, 1);
MERGE_COST = 0; MERGE_COST = 0;
System.out.println("Sorting with Powersort:"); System.out.println("Sorting with Powersort:");
//powerSort(a); powerSort(a,NaturalOrder.INSTANCE);
System.out.println("Merge cost: " + MERGE_COST); System.out.println("Sorted Array"+Arrays.toString(a));
System.out.println("Merge cost: " + MERGE_COST);
} }
@Test @Test
public void testWithFinnInputList() { public void testWithFinnInputList() {
List<Integer> numbers = List.of(new Integer[] {24, 25, 26, 27, 28, 21, 22, 23, 18, 19, 20, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 1, 2}); Integer [] numbers = new Integer[] {24, 25, 26, 27, 28, 21, 22, 23, 18, 19, 20, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 1, 2};
// powerSort(numbers);
System.out.println("Result: ");
System.out.println(new ArrayList<>(List.of(numbers)));
System.out.println("Original array"+Arrays.toString(numbers));
powerSort(numbers, NaturalOrder.INSTANCE);
System.out.println("Result: "+Arrays.toString(numbers));
// System.out.println(new ArrayList<>(List.of(numbers)));
} }
} }

View File

@ -1,8 +1,77 @@
package de.uni_marburg.powersort.sort; package de.uni_marburg.powersort.sort;
import de.uni_marburg.powersort.FinnSort.FasterFinnSort;
import de.uni_marburg.powersort.FinnSort.Run;
import de.uni_marburg.powersort.benchmark.NaturalOrder;
import org.junit.jupiter.api.Test;
import java.lang.reflect.Method;
import static java.lang.Math.pow;
import static org.junit.jupiter.api.Assertions.assertEquals;
public class FasterFinnSortTest extends AbstractSortTest { public class FasterFinnSortTest extends AbstractSortTest {
FasterFinnSortTest() { FasterFinnSortTest() {
sortAlg = SortEnum.FASTER_FINN_SORT; sortAlg = SortEnum.FASTER_FINN_SORT;
} }
} @Test
public void testMergeOrder() {
Integer[] input = {24,25,26,27,28,21,22,23,18,19,20,4,5,6,7,8,9,10,11,12,13,14,15,16,17,3,1,2};
FasterFinnSort.sort(input, 0, input.length, NaturalOrder.INSTANCE,null, 0, 0);
}
@Test
public void powerTest() {
Run run1 = new Run(0, 10, 0);
Run run2 = new Run(10, 20, 0);
for (int i = 20; i < 10100; i++) {
System.out.println(i);
//assertEquals(integerPower(run1, run2, i), power(run1, run2, i));
assertEquals(power(run1, run2, i),
power2(run1, run2, i));
}
}
private static int integerPower(Run run1, Run run2, int n) {
int n_1 = run1.len;
int n_2 = run2.len;
int a = 2 * run1.start + n_1 - 1;
int b = a + n_1 + n_2;
int result = 0;
while (a * pow(2, result) == b * pow(2, result)) {
result++;
}
return result;
}
private static int power(Run run1, Run run2, int n) {
/*
if (run1.start == 0) {
return 0;
}
*/
int n_1 = run1.end - run1.start;
int n_2 = run2.end - run2.start;
double a = ((double) run1.start + 0.5d * n_1) / n;
double b = ((double) run2.start + 0.5d * n_2) / n;
int l = 1;
while ((int) (a * pow(2, l)) == (int) (b * pow(2 ,l))) {
l++;
}
return l;
}
private int power2(Run run1, Run run2, int n) {
long l = (long) run1.start + (long) run2.start; // 2*middleA
long r = (long) run2.start + (long) run2.end + 1; // 2*middleB
int a = (int) ((l << 30) / n); // middleA / 2n
int b = (int) ((r << 30) / n); // middleB / 2n
return Integer.numberOfLeadingZeros(a ^ b);
}
}