diff --git a/app/src/main/java/de/uni_marburg/powersort/sort/dpqs/DualPivotQuicksort.java b/app/src/main/java/de/uni_marburg/powersort/sort/dpqs/DualPivotQuicksort.java
new file mode 100644
index 0000000..d98bf5b
--- /dev/null
+++ b/app/src/main/java/de/uni_marburg/powersort/sort/dpqs/DualPivotQuicksort.java
@@ -0,0 +1,892 @@
+// Imported from JDK23 DualPivotQuicksort.java
+
+package de.uni_marburg.powersort.sort.dpqs;
+
+/*
+ * Copyright (c) 2009, 2023, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+import java.util.Arrays;
+import java.util.concurrent.CountedCompleter;
+import java.util.concurrent.RecursiveTask;
+
+/**
+ * This class implements powerful and fully optimized versions, both
+ * sequential and parallel, of the Dual-Pivot Quicksort algorithm by
+ * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+ * offers O(n log(n)) performance on all data sets, and is typically
+ * faster than traditional (one-pivot) Quicksort implementations.
+ *
+ * There are also additional algorithms, invoked from the Dual-Pivot
+ * Quicksort, such as mixed insertion sort, merging of runs and heap
+ * sort, counting sort and parallel merge sort.
+ *
+ * @author Vladimir Yaroslavskiy
+ * @author Jon Bentley
+ * @author Josh Bloch
+ * @author Doug Lea
+ *
+ * @version 2018.08.18
+ *
+ * @since 1.7 * 14
+ */
+public final class DualPivotQuicksort {
+
+ /**
+ * Prevents instantiation.
+ */
+ private DualPivotQuicksort() {}
+
+ /**
+ * Max array size to use mixed insertion sort.
+ */
+ private static final int MAX_MIXED_INSERTION_SORT_SIZE = 65;
+
+ /**
+ * Max array size to use insertion sort.
+ */
+ private static final int MAX_INSERTION_SORT_SIZE = 44;
+
+ /**
+ * Min array size to try merging of runs.
+ */
+ private static final int MIN_TRY_MERGE_SIZE = 4 << 10;
+
+ /**
+ * Min size of the first run to continue with scanning.
+ */
+ private static final int MIN_FIRST_RUN_SIZE = 16;
+
+ /**
+ * Min factor for the first runs to continue scanning.
+ */
+ private static final int MIN_FIRST_RUNS_FACTOR = 7;
+
+ /**
+ * Max capacity of the index array for tracking runs.
+ */
+ private static final int MAX_RUN_CAPACITY = 5 << 10;
+
+ /**
+ * Threshold of mixed insertion sort is incremented by this value.
+ */
+ private static final int DELTA = 3 << 1;
+
+ /**
+ * Max recursive partitioning depth before using heap sort.
+ */
+ private static final int MAX_RECURSION_DEPTH = 64 * DELTA;
+
+ /**
+ * Represents a function that accepts the array and sorts the specified range
+ * of the array into ascending order.
+ */
+ @FunctionalInterface
+ private static interface SortOperation {
+ /**
+ * Sorts the specified range of the array.
+ *
+ * @param a the array to be sorted
+ * @param low the index of the first element, inclusive, to be sorted
+ * @param high the index of the last element, exclusive, to be sorted
+ */
+ void sort(A a, int low, int high);
+ }
+
+ /**
+ * Sorts the specified range of the array into ascending numerical order.
+ *
+ * @param elemType the class of the elements of the array to be sorted
+ * @param array the array to be sorted
+ * @param offset the relative offset, in bytes, from the base address of
+ * the array to sort, otherwise if the array is {@code null},an absolute
+ * address pointing to the first element to sort from.
+ * @param low the index of the first element, inclusive, to be sorted
+ * @param high the index of the last element, exclusive, to be sorted
+ * @param so the method reference for the fallback implementation
+ */
+ private static void sort(Class> elemType, A array, long offset, int low, int high, SortOperation so) {
+ so.sort(array, low, high);
+ }
+
+ /**
+ * Represents a function that accepts the array and partitions the specified range
+ * of the array using the pivots provided.
+ */
+ @FunctionalInterface
+ interface PartitionOperation {
+ /**
+ * Partitions the specified range of the array using the given pivots.
+ *
+ * @param a the array to be partitioned
+ * @param low the index of the first element, inclusive, to be partitioned
+ * @param high the index of the last element, exclusive, to be partitioned
+ * @param pivotIndex1 the index of pivot1, the first pivot
+ * @param pivotIndex2 the index of pivot2, the second pivot
+ */
+ int[] partition(A a, int low, int high, int pivotIndex1, int pivotIndex2);
+ }
+
+ /**
+ * Partitions the specified range of the array using the two pivots provided.
+ *
+ * @param elemType the class of the array to be partitioned
+ * @param array the array to be partitioned
+ * @param offset the relative offset, in bytes, from the base address of
+ * the array to partition, otherwise if the array is {@code null},an absolute
+ * address pointing to the first element to partition from.
+ * @param low the index of the first element, inclusive, to be partitioned
+ * @param high the index of the last element, exclusive, to be partitioned
+ * @param pivotIndex1 the index of pivot1, the first pivot
+ * @param pivotIndex2 the index of pivot2, the second pivot
+ * @param po the method reference for the fallback implementation
+ */
+ private static int[] partition(Class> elemType, A array, long offset, int low, int high, int pivotIndex1, int pivotIndex2, PartitionOperation po) {
+ return po.partition(array, low, high, pivotIndex1, pivotIndex2);
+ }
+
+ /**
+ * Sorts the specified range of the array using parallel merge
+ * sort and/or Dual-Pivot Quicksort.
+ *
+ * To balance the faster splitting and parallelism of merge sort
+ * with the faster element partitioning of Quicksort, ranges are
+ * subdivided in tiers such that, if there is enough parallelism,
+ * the four-way parallel merge is started, still ensuring enough
+ * parallelism to process the partitions.
+ *
+ * @param a the array to be sorted
+ * @param low the index of the first element, inclusive, to be sorted
+ * @param high the index of the last element, exclusive, to be sorted
+ */
+ public static void sort(int[] a, int low, int high) {
+ int size = high - low;
+
+ sort(a, 0, low, high);
+ }
+
+ /**
+ * Sorts the specified array using the Dual-Pivot Quicksort and/or
+ * other sorts in special-cases, possibly with parallel partitions.
+ *
+ * @param a the array to be sorted
+ * @param bits the combination of recursion depth and bit flag, where
+ * the right bit "0" indicates that array is the leftmost part
+ * @param low the index of the first element, inclusive, to be sorted
+ * @param high the index of the last element, exclusive, to be sorted
+ */
+ static void sort(int[] a, int bits, int low, int high) {
+ while (true) {
+ int end = high - 1, size = high - low;
+ /*
+ * Run mixed insertion sort on small non-leftmost parts.
+ */
+ if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) {
+ sort(int.class, a, Unsafe.ARRAY_INT_BASE_OFFSET, low, high, DualPivotQuicksort::mixedInsertionSort);
+ return;
+ }
+
+ /*
+ * Invoke insertion sort on small leftmost part.
+ */
+ if (size < MAX_INSERTION_SORT_SIZE) {
+ sort(int.class, a, Unsafe.ARRAY_INT_BASE_OFFSET, low, high, DualPivotQuicksort::insertionSort);
+ return;
+ }
+
+ /*
+ * Check if the whole array or large non-leftmost
+ * parts are nearly sorted and then merge runs.
+ */
+ if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0)
+ && tryMergeRuns(a, low, size)) {
+ return;
+ }
+
+ /*
+ * Switch to heap sort if execution
+ * time is becoming quadratic.
+ */
+ if ((bits += DELTA) > MAX_RECURSION_DEPTH) {
+ heapSort(a, low, high);
+ return;
+ }
+
+ /*
+ * Use an inexpensive approximation of the golden ratio
+ * to select five sample elements and determine pivots.
+ */
+ int step = (size >> 3) * 3 + 3;
+
+ /*
+ * Five elements around (and including) the central element
+ * will be used for pivot selection as described below. The
+ * unequal choice of spacing these elements was empirically
+ * determined to work well on a wide variety of inputs.
+ */
+ int e1 = low + step;
+ int e5 = end - step;
+ int e3 = (e1 + e5) >>> 1;
+ int e2 = (e1 + e3) >>> 1;
+ int e4 = (e3 + e5) >>> 1;
+ int a3 = a[e3];
+
+ /*
+ * Sort these elements in place by the combination
+ * of 4-element sorting network and insertion sort.
+ *
+ * 5 ------o-----------o------------
+ * | |
+ * 4 ------|-----o-----o-----o------
+ * | | |
+ * 2 ------o-----|-----o-----o------
+ * | |
+ * 1 ------------o-----o------------
+ */
+ if (a[e5] < a[e2]) { int t = a[e5]; a[e5] = a[e2]; a[e2] = t; }
+ if (a[e4] < a[e1]) { int t = a[e4]; a[e4] = a[e1]; a[e1] = t; }
+ if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; }
+ if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
+ if (a[e4] < a[e2]) { int t = a[e4]; a[e4] = a[e2]; a[e2] = t; }
+
+ if (a3 < a[e2]) {
+ if (a3 < a[e1]) {
+ a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3;
+ } else {
+ a[e3] = a[e2]; a[e2] = a3;
+ }
+ } else if (a3 > a[e4]) {
+ if (a3 > a[e5]) {
+ a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3;
+ } else {
+ a[e3] = a[e4]; a[e4] = a3;
+ }
+ }
+
+ // Pointers
+ int lower; // The index of the last element of the left part
+ int upper; // The index of the first element of the right part
+
+ /*
+ * Partitioning with 2 pivots in case of different elements.
+ */
+ if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) {
+ /*
+ * Use the first and fifth of the five sorted elements as
+ * the pivots. These values are inexpensive approximation
+ * of tertiles. Note, that pivot1 < pivot2.
+ */
+ int[] pivotIndices = partition(int.class, a, Unsafe.ARRAY_INT_BASE_OFFSET, low, high, e1, e5, DualPivotQuicksort::partitionDualPivot);
+ lower = pivotIndices[0];
+ upper = pivotIndices[1];
+
+
+
+ /*
+ * Sort non-left parts recursively,
+ * excluding known pivots.
+ */
+ sort(a, bits | 1, lower + 1, upper);
+ sort(a, bits | 1, upper + 1, high);
+
+ } else { // Use single pivot in case of many equal elements
+
+ /*
+ * Use the third of the five sorted elements as the pivot.
+ * This value is inexpensive approximation of the median.
+ */
+ int[] pivotIndices = partition(int.class, a, Unsafe.ARRAY_INT_BASE_OFFSET, low, high, e3, e3, DualPivotQuicksort::partitionSinglePivot);
+ lower = pivotIndices[0];
+ upper = pivotIndices[1];
+ /*
+ * Sort the right part, excluding
+ * known pivot. All elements from the central part are
+ * equal and therefore already sorted.
+ */
+ sort(a, bits | 1, upper, high);
+ }
+ high = lower; // Iterate along the left part
+ }
+ }
+
+ /**
+ * Partitions the specified range of the array using the two pivots provided.
+ *
+ * @param a the array to be partitioned
+ * @param low the index of the first element, inclusive, for partitioning
+ * @param high the index of the last element, exclusive, for partitioning
+ * @param pivotIndex1 the index of pivot1, the first pivot
+ * @param pivotIndex2 the index of pivot2, the second pivot
+ *
+ */
+ private static int[] partitionDualPivot(int[] a, int low, int high, int pivotIndex1, int pivotIndex2) {
+ int end = high - 1;
+ int lower = low;
+ int upper = end;
+
+ int e1 = pivotIndex1;
+ int e5 = pivotIndex2;
+ int pivot1 = a[e1];
+ int pivot2 = a[e5];
+
+ /*
+ * The first and the last elements to be sorted are moved
+ * to the locations formerly occupied by the pivots. When
+ * partitioning is completed, the pivots are swapped back
+ * into their final positions, and excluded from the next
+ * subsequent sorting.
+ */
+ a[e1] = a[lower];
+ a[e5] = a[upper];
+
+ /*
+ * Skip elements, which are less or greater than the pivots.
+ */
+ while (a[++lower] < pivot1);
+ while (a[--upper] > pivot2);
+
+ /*
+ * Backward 3-interval partitioning
+ *
+ * left part central part right part
+ * +------------------------------------------------------------+
+ * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 |
+ * +------------------------------------------------------------+
+ * ^ ^ ^
+ * | | |
+ * lower k upper
+ *
+ * Invariants:
+ *
+ * all in (low, lower] < pivot1
+ * pivot1 <= all in (k, upper) <= pivot2
+ * all in [upper, end) > pivot2
+ *
+ * Pointer k is the last index of ?-part
+ */
+ for (int unused = --lower, k = ++upper; --k > lower; ) {
+ int ak = a[k];
+
+ if (ak < pivot1) { // Move a[k] to the left side
+ while (lower < k) {
+ if (a[++lower] >= pivot1) {
+ if (a[lower] > pivot2) {
+ a[k] = a[--upper];
+ a[upper] = a[lower];
+ } else {
+ a[k] = a[lower];
+ }
+ a[lower] = ak;
+ break;
+ }
+ }
+ } else if (ak > pivot2) { // Move a[k] to the right side
+ a[k] = a[--upper];
+ a[upper] = ak;
+ }
+ }
+
+ /*
+ * Swap the pivots into their final positions.
+ */
+ a[low] = a[lower]; a[lower] = pivot1;
+ a[end] = a[upper]; a[upper] = pivot2;
+
+ return new int[] {lower, upper};
+ }
+
+ /**
+ * Partitions the specified range of the array using a single pivot provided.
+ *
+ * @param a the array to be partitioned
+ * @param low the index of the first element, inclusive, for partitioning
+ * @param high the index of the last element, exclusive, for partitioning
+ * @param pivotIndex1 the index of pivot1, the first pivot
+ * @param pivotIndex2 the index of pivot2, the second pivot
+ *
+ */
+ private static int[] partitionSinglePivot(int[] a, int low, int high, int pivotIndex1, int pivotIndex2) {
+
+ int end = high - 1;
+ int lower = low;
+ int upper = end;
+ int e3 = pivotIndex1;
+ int pivot = a[e3];
+
+ /*
+ * The first element to be sorted is moved to the
+ * location formerly occupied by the pivot. After
+ * completion of partitioning the pivot is swapped
+ * back into its final position, and excluded from
+ * the next subsequent sorting.
+ */
+ a[e3] = a[lower];
+
+ /*
+ * Traditional 3-way (Dutch National Flag) partitioning
+ *
+ * left part central part right part
+ * +------------------------------------------------------+
+ * | < pivot | ? | == pivot | > pivot |
+ * +------------------------------------------------------+
+ * ^ ^ ^
+ * | | |
+ * lower k upper
+ *
+ * Invariants:
+ *
+ * all in (low, lower] < pivot
+ * all in (k, upper) == pivot
+ * all in [upper, end] > pivot
+ *
+ * Pointer k is the last index of ?-part
+ */
+ for (int k = ++upper; --k > lower; ) {
+ int ak = a[k];
+
+ if (ak != pivot) {
+ a[k] = pivot;
+
+ if (ak < pivot) { // Move a[k] to the left side
+ while (a[++lower] < pivot);
+
+ if (a[lower] > pivot) {
+ a[--upper] = a[lower];
+ }
+ a[lower] = ak;
+ } else { // ak > pivot - Move a[k] to the right side
+ a[--upper] = ak;
+ }
+ }
+ }
+
+ /*
+ * Swap the pivot into its final position.
+ */
+ a[low] = a[lower]; a[lower] = pivot;
+ return new int[] {lower, upper};
+ }
+
+ /**
+ * Sorts the specified range of the array using mixed insertion sort.
+ *
+ * Mixed insertion sort is combination of simple insertion sort,
+ * pin insertion sort and pair insertion sort.
+ *
+ * In the context of Dual-Pivot Quicksort, the pivot element
+ * from the left part plays the role of sentinel, because it
+ * is less than any elements from the given part. Therefore,
+ * expensive check of the left range can be skipped on each
+ * iteration unless it is the leftmost call.
+ *
+ * @param a the array to be sorted
+ * @param low the index of the first element, inclusive, to be sorted
+ * @param high the index of the last element, exclusive, to be sorted
+ */
+ private static void mixedInsertionSort(int[] a, int low, int high) {
+ int size = high - low;
+ int end = high - 3 * ((size >> 5) << 3);
+ if (end == high) {
+
+ /*
+ * Invoke simple insertion sort on tiny array.
+ */
+ for (int i; ++low < end; ) {
+ int ai = a[i = low];
+
+ while (ai < a[--i]) {
+ a[i + 1] = a[i];
+ }
+ a[i + 1] = ai;
+ }
+ } else {
+
+ /*
+ * Start with pin insertion sort on small part.
+ *
+ * Pin insertion sort is extended simple insertion sort.
+ * The main idea of this sort is to put elements larger
+ * than an element called pin to the end of array (the
+ * proper area for such elements). It avoids expensive
+ * movements of these elements through the whole array.
+ */
+ int pin = a[end];
+
+ for (int i, p = high; ++low < end; ) {
+ int ai = a[i = low];
+
+ if (ai < a[i - 1]) { // Small element
+
+ /*
+ * Insert small element into sorted part.
+ */
+ a[i] = a[--i];
+
+ while (ai < a[--i]) {
+ a[i + 1] = a[i];
+ }
+ a[i + 1] = ai;
+
+ } else if (p > i && ai > pin) { // Large element
+
+ /*
+ * Find element smaller than pin.
+ */
+ while (a[--p] > pin);
+
+ /*
+ * Swap it with large element.
+ */
+ if (p > i) {
+ ai = a[p];
+ a[p] = a[i];
+ }
+
+ /*
+ * Insert small element into sorted part.
+ */
+ while (ai < a[--i]) {
+ a[i + 1] = a[i];
+ }
+ a[i + 1] = ai;
+ }
+ }
+
+ /*
+ * Continue with pair insertion sort on remain part.
+ */
+ for (int i; low < high; ++low) {
+ int a1 = a[i = low], a2 = a[++low];
+
+ /*
+ * Insert two elements per iteration: at first, insert the
+ * larger element and then insert the smaller element, but
+ * from the position where the larger element was inserted.
+ */
+ if (a1 > a2) {
+
+ while (a1 < a[--i]) {
+ a[i + 2] = a[i];
+ }
+ a[++i + 1] = a1;
+
+ while (a2 < a[--i]) {
+ a[i + 1] = a[i];
+ }
+ a[i + 1] = a2;
+
+ } else if (a1 < a[i - 1]) {
+
+ while (a2 < a[--i]) {
+ a[i + 2] = a[i];
+ }
+ a[++i + 1] = a2;
+
+ while (a1 < a[--i]) {
+ a[i + 1] = a[i];
+ }
+ a[i + 1] = a1;
+ }
+ }
+ }
+ }
+
+ /**
+ * Sorts the specified range of the array using insertion sort.
+ *
+ * @param a the array to be sorted
+ * @param low the index of the first element, inclusive, to be sorted
+ * @param high the index of the last element, exclusive, to be sorted
+ */
+ private static void insertionSort(int[] a, int low, int high) {
+ for (int i, k = low; ++k < high; ) {
+ int ai = a[i = k];
+
+ if (ai < a[i - 1]) {
+ while (--i >= low && ai < a[i]) {
+ a[i + 1] = a[i];
+ }
+ a[i + 1] = ai;
+ }
+ }
+ }
+
+ /**
+ * Sorts the specified range of the array using heap sort.
+ *
+ * @param a the array to be sorted
+ * @param low the index of the first element, inclusive, to be sorted
+ * @param high the index of the last element, exclusive, to be sorted
+ */
+ private static void heapSort(int[] a, int low, int high) {
+ for (int k = (low + high) >>> 1; k > low; ) {
+ pushDown(a, --k, a[k], low, high);
+ }
+ while (--high > low) {
+ int max = a[low];
+ pushDown(a, low, a[high], low, high);
+ a[high] = max;
+ }
+ }
+
+ /**
+ * Pushes specified element down during heap sort.
+ *
+ * @param a the given array
+ * @param p the start index
+ * @param value the given element
+ * @param low the index of the first element, inclusive, to be sorted
+ * @param high the index of the last element, exclusive, to be sorted
+ */
+ private static void pushDown(int[] a, int p, int value, int low, int high) {
+ for (int k ;; a[p] = a[p = k]) {
+ k = (p << 1) - low + 2; // Index of the right child
+
+ if (k > high) {
+ break;
+ }
+ if (k == high || a[k] < a[k - 1]) {
+ --k;
+ }
+ if (a[k] <= value) {
+ break;
+ }
+ }
+ a[p] = value;
+ }
+
+ /**
+ * Tries to sort the specified range of the array.
+ *
+ * @param a the array to be sorted
+ * @param low the index of the first element to be sorted
+ * @param size the array size
+ * @return true if finally sorted, false otherwise
+ */
+ private static boolean tryMergeRuns(int[] a, int low, int size) {
+
+ /*
+ * The run array is constructed only if initial runs are
+ * long enough to continue, run[i] then holds start index
+ * of the i-th sequence of elements in non-descending order.
+ */
+ int[] run = null;
+ int high = low + size;
+ int count = 1, last = low;
+
+ /*
+ * Identify all possible runs.
+ */
+ for (int k = low + 1; k < high; ) {
+
+ /*
+ * Find the end index of the current run.
+ */
+ if (a[k - 1] < a[k]) {
+
+ // Identify ascending sequence
+ while (++k < high && a[k - 1] <= a[k]);
+
+ } else if (a[k - 1] > a[k]) {
+
+ // Identify descending sequence
+ while (++k < high && a[k - 1] >= a[k]);
+
+ // Reverse into ascending order
+ for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) {
+ int ai = a[i]; a[i] = a[j]; a[j] = ai;
+ }
+ } else { // Identify constant sequence
+ for (int ak = a[k]; ++k < high && ak == a[k]; );
+
+ if (k < high) {
+ continue;
+ }
+ }
+
+ /*
+ * Check special cases.
+ */
+ if (run == null) {
+ if (k == high) {
+
+ /*
+ * The array is monotonous sequence,
+ * and therefore already sorted.
+ */
+ return true;
+ }
+
+ if (k - low < MIN_FIRST_RUN_SIZE) {
+
+ /*
+ * The first run is too small
+ * to proceed with scanning.
+ */
+ return false;
+ }
+
+ run = new int[((size >> 10) | 0x7F) & 0x3FF];
+ run[0] = low;
+
+ } else if (a[last - 1] > a[last]) {
+
+ if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) {
+
+ /*
+ * The first runs are not long
+ * enough to continue scanning.
+ */
+ return false;
+ }
+
+ if (++count == MAX_RUN_CAPACITY) {
+
+ /*
+ * Array is not highly structured.
+ */
+ return false;
+ }
+
+ if (count == run.length) {
+
+ /*
+ * Increase capacity of index array.
+ */
+ run = Arrays.copyOf(run, count << 1);
+ }
+ }
+ run[count] = (last = k);
+ }
+
+ /*
+ * Merge runs of highly structured array.
+ */
+ if (count > 1) {
+ int[] b; int offset = low;
+
+ b = new int[size];
+ mergeRuns(a, b, offset, 1, run, 0, count);
+ }
+ return true;
+ }
+
+ /**
+ * Merges the specified runs.
+ *
+ * @param a the source array
+ * @param b the temporary buffer used in merging
+ * @param offset the start index in the source, inclusive
+ * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0)
+ * @param run the start indexes of the runs, inclusive
+ * @param lo the start index of the first run, inclusive
+ * @param hi the start index of the last run, inclusive
+ * @return the destination where runs are merged
+ */
+ private static int[] mergeRuns(int[] a, int[] b, int offset,
+ int aim, int[] run, int lo, int hi) {
+
+ if (hi - lo == 1) {
+ if (aim >= 0) {
+ return a;
+ }
+ for (int i = run[hi], j = i - offset, low = run[lo]; i > low;
+ b[--j] = a[--i]
+ );
+ return b;
+ }
+
+ /*
+ * Split into approximately equal parts.
+ */
+ int mi = lo, rmi = (run[lo] + run[hi]) >>> 1;
+ while (run[++mi + 1] <= rmi);
+
+ /*
+ * Merge the left and right parts.
+ */
+ int[] a1, a2;
+
+ a1 = mergeRuns(a, b, offset, -aim, run, lo, mi);
+ a2 = mergeRuns(a, b, offset, 0, run, mi, hi);
+
+ int[] dst = a1 == a ? b : a;
+
+ int k = a1 == a ? run[lo] - offset : run[lo];
+ int lo1 = a1 == b ? run[lo] - offset : run[lo];
+ int hi1 = a1 == b ? run[mi] - offset : run[mi];
+ int lo2 = a2 == b ? run[mi] - offset : run[mi];
+ int hi2 = a2 == b ? run[hi] - offset : run[hi];
+
+ mergeParts(dst, k, a1, lo1, hi1, a2, lo2, hi2);
+ return dst;
+ }
+
+ /**
+ * Merges the sorted parts.
+ *
+ * @param dst the destination where parts are merged
+ * @param k the start index of the destination, inclusive
+ * @param a1 the first part
+ * @param lo1 the start index of the first part, inclusive
+ * @param hi1 the end index of the first part, exclusive
+ * @param a2 the second part
+ * @param lo2 the start index of the second part, inclusive
+ * @param hi2 the end index of the second part, exclusive
+ */
+ private static void mergeParts(int[] dst, int k,
+ int[] a1, int lo1, int hi1, int[] a2, int lo2, int hi2) {
+
+
+ /*
+ * Merge small parts sequentially.
+ */
+ while (lo1 < hi1 && lo2 < hi2) {
+ dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++];
+ }
+ if (dst != a1 || k < lo1) {
+ while (lo1 < hi1) {
+ dst[k++] = a1[lo1++];
+ }
+ }
+ if (dst != a2 || k < lo2) {
+ while (lo2 < hi2) {
+ dst[k++] = a2[lo2++];
+ }
+ }
+ }
+
+// [long]
+
+// [byte]
+
+// [char]
+
+// [short]
+
+// [float]
+
+// [double]
+
+}
\ No newline at end of file
diff --git a/app/src/main/java/de/uni_marburg/powersort/sort/dpqs/Unsafe.java b/app/src/main/java/de/uni_marburg/powersort/sort/dpqs/Unsafe.java
new file mode 100644
index 0000000..2395c0b
--- /dev/null
+++ b/app/src/main/java/de/uni_marburg/powersort/sort/dpqs/Unsafe.java
@@ -0,0 +1,8 @@
+package de.uni_marburg.powersort.sort.dpqs;
+
+public final class Unsafe {
+ private Unsafe() {
+ }
+ public static final int ARRAY_INT_BASE_OFFSET
+ = 16; // Taken from debugging JDK 23 Unsafe.ARRAY_INT_BASE_OFFSET
+}