\documentclass{article} \usepackage{amsmath} \DeclareMathSizes{10}{10}{10}{10} \title{Mathe C4 Merz - Cheatsheet} \author{Yannik Schmidt (Sheppy)\\September 2015} \date{Diesen Zusammenfassung kann Fehler enthalten!} \begin{document} \maketitle \section{Statistik} \subsection{empirisches arithmetisches Mittel} \[x_{arith}=\frac{1}{n}\sum_{i=1}^n x_i\] \subsection{empirischer Median (Zentralwert)} \[ x_{median}= \begin{cases} \frac{x_{n+1}}{2} & \text{n ungerade} \\ \frac{x_{n/2} \;\; + x_{(n+1)/2}}{2} & \text{n gerade} \end{cases} \] Wobei der Index fuer die n'te Zahl in einer Angabe in Stile von \{A,B,C,...\} steht. \subsection{empirische Varianz} \[x_{var}=\frac{1}{n-1}\sum_{i=1}^n (x_i-x_{median})\] \subsection{Gleichgewichtsverteilung} \[ G_{var} = \begin{pmatrix} 1 \\ . \\ . \\ 1 \end{pmatrix} *\left [ \begin{pmatrix} 1&.&.& 0 \\ . & 1 &.& . \\ . & . &1& . \\ 0&.&.&1 \end{pmatrix}-P+ \begin{pmatrix} 1&.&.&1 \\ .&.&.&. \\ .&.&.&. \\ 1&.&.&1 \end{pmatrix}\right ] ^{-1} \] Wobei P die Uebergangsmatrix ist. Die Alternative ist die Matrix solang zu potentieren bis sie konvergiert. \section{Mengen} \subsection{o-Algebra} - leere Menge enthalten\\ - alle Kombinationen der Elemente enthalten, die nicht bereits gemeinsamme Elemente haben also z.B. \textbf{NICHT} \{x,y\} und \{y,z\} zu \{x,y,z\} machen\\ - alle Komplemente enthalten\\ \\ \textbf{Beispiel:}\\ Grundmenge = $\{1,2,3,4\}$\\ NICHT o-Algebra Menge = $\{\{1,2\},\{3\}\}$\\ o-Algebra Menge = $\{\emptyset ,\{1,2\},\{3\}, \underbrace{\{1,2,3\}}_{\substack{\{1,2\}\{3\}}}, \underbrace{\{3,4\}}_{\substack{\neg \{1,2\}}}, \underbrace{\{4\}}_{\substack{\neg \{1,2,3\}}}, \{1,2,3,4\},\{1,2,4\}\}$ \section{Wahrscheinlichkeiten} \subsection{Wuerfeln} \subsubsection{keine 6} \[ p_0 = \left( \frac{5}{6} \right)^n , n = \text{Anzahl der Wuerfe} \] \subsubsection{mindestens 'x' 6er (Gegenereignis)} \[ p_1 = 1 - \left( \frac{5}{6} \right)^n = 1 - p_0 \] \[ p_2 = 1-\left(1 - \left( \frac{5}{6} \right)^n\right)-\left( \frac{5}{6} \right)^n = 1-p_1 -p_0 \] \[ p_x = 1 - \sum_{i=0}^{x-1} p_i \] \subsubsection{6er-Pasch bei 2 Wuerfeln} $Ereignisraum = 6^2 , \text{Anzahl guenstiger Ereignisse = 1 , naehmlich (6,6)}$\\ dann wieder ueber Gegenereignis: \\ \[ p=1-\left(\frac{35}{36}\right)^n \] \subsubsection{genau eine 6 bei n-Wuerfeln/Wuerfen} \[ p= \frac{n*5^{(n-1)}}{6^n}\]\\ - $6^n $ ist wie immer die Anzahl der Gesamtmoeglichkeiten \\ - es gibt n-Moglichkeiten an der die 6 sein kann \\ - es bleiben bei den verbleibenden n-1 Wuerfen 5 Moeglichkeiten \subsubsection{genau x-6er bei n-Wuerfeln/Wuerfen} \[ p= \frac{\begin{pmatrix} x\\n \end{pmatrix}5^{(n-x)}}{6^n}\]\\ \[\begin{pmatrix} x\\n \end{pmatrix}= \frac{n!}{k!(n-k)!} \]\\ $\textbf{oder noch allgemeiner, mit Anzahl Moeglichkeiten 'z' (z.B. 6 bei Wuerfel):}$\[ p= \frac{\begin{pmatrix} x\\n \end{pmatrix}(z-1)^{(n-x)}}{z^n} \] \subsubsection{Seiten mit verschiedenen Wahrscheinlichkeiten} z.B. 6 Seiten mit normaler Wahrscheinlichkeit $(w_1)$, 8 Seiten mit 1/4 Wahrscheinlichkeit $(w_2)$, wir exploiten die Tatsache, dass: \\ \[ \sum (Teil-)Wahrscheinlichkeiten = 1 \]\\ also:\\ \begin{equation} 6w_1 + 8w_2 = 1 \end{equation} \begin{equation} \frac{1}{4}w_1 = w_2 \end{equation}\\ Zwei Gleichungen, zwei Unbekannte, easy mode. \section{Bedingte Wahrscheinlichkeiten} \subsection{Beispiele} \subsubsection{Krankheitstest} 0,2\% Krank, 95\% der Kranken werden erkannt, 98\% der Gesunden werden richtig erkannt\\ \\ \textbf{Wie viele als Krank erkannte wirklich krank?}\\ \[ P(K | K_{ident} ) = \frac{P(K_{ident}|K)*P(K)} {P(K_{ident}|K)*P(K)+P(K_{ident}|K)*P(\neg K)} = \frac{0,95*0,002}{0,95*0,002+0,002*0,998} = 8,7\% \] \subsubsection{min. eine 6 unter Bedingung verschiedene Augenzahlen} \[ P(min. eine 6|verschiedene Augenzahlen) = \frac{\text{Moeglichkeiten verschiedene Augenzahlen UND min. eine 6}}{\text{Moeglichkeiten verschiedene Augenzahlen}} \]\\ \[ p=\frac{n*(6-1)!-(6-n)!}{6!-n!} \] bei 3 Wuerfeln also z.B.:\[ p=\frac{3*5!-3!}{6!-3!} = \frac{3*5*4}{6*5*4} = 0,5 \] \section{Wahrscheinlichkeitsfunktionen} \subsection{Eigenschaften von Wahrscheinlichkeitsfunktionen} \[ \sum_{w \in \Omega} f(w) = 1 \text{ (die Summe aller Wahrscheinlichkeiten ist 1)}\] und logischerweise: \[ \forall w\in\Omega . f(w)>=0 \text{ (keine negativen Wahrscheinlichkeiten)} \] \subsection{Momenterzeugende Funktion} \[ M(t)=\sum_{n\in\Omega}^{\infty}(e^t)^n * f(n) \] - f(n) ist die gegebene Wahrscheinlichkeitsfunktion\\ - 'n' koennte z.B. definiert sein als $n=\{1,2,3,...\}$ \subsection{Erzeugende Funktion} \subsubsection{Wahrscheinlichkeitsfunktion berechnen} \subsubsection{Mitterlwert} \subsubsection{Varianz} TODO \subsection{Mittelwert, Varrianz} \begin{itemize} \item Mittelwert: $m_1 = \sum_{n=0}^\infty n*f(n)$ \item Varianz: $\widehat{m}_2 = m_2 - m_1^2$ \end{itemize} \section{Verteilungen} \subsection{Allgemein} \subsubsection{Eigenschaften} \begin{itemize} \item stetig \item monoton steigend \item $\lim_{t \to \infty} G(t) = 1, \quad \lim_{t \to -\infty} G(t) = 0$ \item Dichte $g(t) = G'(t)$ \item $m_1 = \int_{-\infty}^{\infty}t*g(t)dt$ \end{itemize} \subsection{Binominalverteilung} \subsubsection{Allgemein} \[ \mathcal{B}(k | p,n) \enspace \textbf{ oder auch } \enspace B(k;p,n) = \begin{pmatrix} n \\ k \end{pmatrix} p^k(1-p)^{n-k} \enspace \newline \text{mit k = 0,1,2,...,n} \] - wobei diese Funktion die \textbf{kommulierte} Wahrscheinlichkeit angibt, also z.B. wobei k = 2 die Wahrscheinlichkeit "1 oder 2" \\ - p ist die Wahrscheinlichkeit fuer ein positives Ereigbnis \\ - n ist Anzaehl wie oft wir ziehen \subsubsection{Beispiel: 500 Druckfehler auf 500 Seiten} Wie hoch ist die Wahrscheinlichkeit, dass auf einer Seite mindestens 3 Druckfehler sind? \[ 1- \sum_{k=0}^{2} \mathcal{B}(k|p,n) \enspace mit \enspace \] \\ k=0,1,2 (Gegenereignisse)\\ n = 500 (wir ziehen Fehler "ohne zuruecklegen") \\ p=1/500 (die Wahrscheinlichkeit dass ein Fehler auf einer bestimmten Seite ist)\\ \begin{equation*} \begin{split} 1- \sum_{k=0}^{2} \mathcal{B}(k|1/500,500)& = 1 - \mathcal{B}(0|1/500,500) - \mathcal{B}(1|1/500,500) - \mathcal{B}(2| 1/500,500) \\ & = 1 - \mathcal{B}(0|1/500,500) - \mathcal{B}(1|1/500,500) - \mathcal{B}(2| 1/500,500) \\ & = 1 - \left( \frac{499}{500} \right) ^{500} - 500\frac{1}{500}\left(\frac{499}{500}\right)^{499} - \frac{500*499}{1*2}\left( \frac{1}{500} \right) ^2 \left( \frac{499}{500} \right) ^{498} \\ & = 0,08 \end{split} \end{equation*} \subsection{Possion-Verteilung} \subsubsection{Allgemein} Ereignisse muessen mit konstanter Rate, unabhaengig voneinander und in einem festen Bereich (Modell) stattfinden! \[ P_{\lambda}(n) = \frac{\lambda ^n}{n!} e ^{- \lambda} \] \subsection{N(0,1)-Verteilung} $f(x) = \frac{1}{\sqrt{2\pi}}*e^{-0.5x^2}$ \subsection{Normal-Verteilung} $f(x) = N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}*e^{-\frac{1}{2\sigma^2}(x- \mu)^2} \quad \quad m_1 = \mu \quad \quad \widehat{m}_2=\sigma^2$ \subsection{Exponentiallverteilung} $f(\lambda) = \lambda*e^{-\lambda t}$ \subsection{Laplace-Verteilung} Zufallsexperimente, bei denen jedes Ergebnis die gleiche Chance hat. \\ $f(w) = L(\Omega) = \frac{1}{|\Omega|}$ \subsection{Hypergeometrische Verteilung} Zufallsexperimente, bei denen man die Ergebnisse als Anzahlen von schwarzen Kugeln unter n gezogenen interpretieren kann. \\ $f(k) = H(N, K, n) = \frac{\binom{K}{k}*\binom{N-K}{n-k}}{\binom{N}{n}}$ \subsection{Geometrische Verteilung} Die geometrische Verteilung beschreibt die Wartezeit für das erstmalige Eintreten eines Ereignisses unter der Annahme der Gedaechtnislosigkeit. \\ $G(p) = f(n) = p*q^{n-1} \quad \quad m_1 = \frac{1}{p}$ \section{Zufallsvarriablen} \subsection{Verteilungen von Zufallsvariablen} Wir benoetigen mehrdimensionale integration, d.h. wir \textbf{muessen} wissen von wo bis wo wir integrieren wollen \\ \\ \subsubsection{Beispiel, Ereignis gegeben + Verteilungsfunktion gegeben:} $Ereignis: \: X_2 > 2X_1 \: => \: \underbrace{\int_{-\infty}^{+\infty}}_{X_1} \underbrace{\int_{2X_1}^{+\infty}}_{X_2}$\\ \\ \\ $Verteilung: \: expotentiell \: => \: f(\lambda) = \lambda e^{-\lambda t}$ \\ $Ausserdem \: sei: \: \lambda_1 = 1 \:\, und \:\, \lambda_2 =2 $\\ \\ Wir integrieren zunaechst ueber $X_2$ d.h. wir sezten $\lambda = 2$ \[ \begin{split} \int_{-\infty}^{+\infty} \int_{2X_1}^{+\infty} 2 e^{-2 X_2} \: dX_2 dX_1 \end{split} \] Fuer $X_1$ setzen wir dann dementsprechend $\lambda e^{-\lambda t}$ mit $\lambda = 1$ ein, dann nur noch das 2te Integral ausrechnen. % \\ \\ \textbf{Moeglichkeit b) - Nach $x_1$ oder $x_2$ umstellen} \\ (ggf. mit Koordinatentransformation) \subsubsection{Alternatives Beispiel:} X,Y stochastisch unabhaengige, mit Parameter 'p' geometrisch verteilte Zufallsvarriablen in Wahrscheinlichkeitsraum $(\varOmega , \mathcal{A},P)$. Welche Verteilung besitzt Zufallsvarriable $Z = min(X,Y)$, definiert durch $Z( \omega ) = min \{X(\omega),Y(\omega)\}$.\\ \[ \] \section{Marginaldichte - Beispielrechnung} \[ f(x_z,x_2)= \begin{cases} ce^{-(2x_1+3x_2)} & x_1 > 0 \: und \: 0 < x_2