mirror of
https://gitlab.cs.fau.de/ik15ydit/latexandmore.git
synced 2025-01-24 22:05:45 +01:00
Markov Kette Algorithmus
This commit is contained in:
parent
13ca616b16
commit
ca35f5e4d0
@ -1,5 +1,7 @@
|
||||
\documentclass{article}
|
||||
% -------- Mathe Libraries ---------------
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
% -------- Umlaute korrekt ----------------
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[ngerman, english]{babel}
|
||||
@ -356,7 +358,24 @@ unabhängig sind.
|
||||
\end{align}
|
||||
$\longrightarrow$ Da Mittelwert der $\varepsilon$-Verteilung gerade Kehrwert des
|
||||
Paramters ist.
|
||||
\item Folgerung: Dichte $g_1$ ist also die der Uniform-Verteilung ($U(0,1)$).
|
||||
\item Folgerung: Dichte $g_1$ ist also die der Uniform-Verteilung ($\mathcal{U}(0,1)$).
|
||||
\end{enumerate}
|
||||
|
||||
\section{Markov-Ketten}
|
||||
\begin{itemize}
|
||||
\item Bei Übergangsmatrix $P \in (\mathbb{R}_{\geq 0})^{r x r}$ sind
|
||||
alle Zeilensummen gleich $1$.
|
||||
\item Vektor $\vec{u} \in (\mathbb{R}_{\geq 0})^{r}$ mit $||\vec{u}||_1 = 1$
|
||||
der
|
||||
\begin{align}
|
||||
\vec{u} = P^T \cdot \vec{u}
|
||||
\end{align}
|
||||
erfüllt, heißt \textbf{Gleichgewichtszustand/-verteilung}.
|
||||
\item Berechnung von $\vec{u}$: $\text{Kern}(P^T - \text{ Id}_r)$.\\$\rightarrow$
|
||||
Kern wird berechnet durch klassischen Gauß- Algorithmus. Wenn keine
|
||||
eindeutige Lsg (z.B. $0 = 0$), dann Variable beliebig wählen. Es gibt
|
||||
immer einen Kern, da Determinante stets $0$ ist durch obige Summenbedinung.
|
||||
\item Vektoreinträge müssen positiv sein, sonst Fehler.
|
||||
\item Vektor auf Größe $1$ skalieren
|
||||
\end{itemize}
|
||||
\end{document}
|
||||
|
Loading…
x
Reference in New Issue
Block a user